接下来的重点并不是教AI识别帖子的表面含义和背后的阴阳怪气。
而是让它按照指示去搜索一些重复出现的东西,这些东西被研究人员称之为「句法指纹」——单词、短语、表情符号、标点符号、错误、上下文等等。
最重要的一步是,通过添加更多的示例流(比如同一话题下的其他帖子或来自同一帐户的其他帖子),来为模型提供充分的数据支持。然后,对每个新的单独示例进行一系列计算,直到得到一个单一的判断: 是讽刺or不是讽刺。
最后,可以编一个机器人来询问每个发帖人:你是在讽刺吗?(听起来有点傻……)任何回应都会添加到AI不断增长的经验中。
通过这样的方法,最新的讽刺探测器AI的成功率接近惊人的90% 。
「反讽」的哲学性思考不过,能够梳理出代表讽刺的「句法指纹」和真正地理解讽刺,是一回事儿吗?
其实,哲学家和文学理论家已经对于「反讽」已经思考很久了。
德国哲学家施莱格尔认为,「一个陈述不能同时为真和假」,由此产生的不确定性对逻辑具有毁灭性的影响。
文学理论家保罗·德曼认为,人类语言的每一次使用都可能受到「反讽」的困扰,因为人类有能力互相隐瞒自己的想法,所以他们「说的不是真话」这种事,永远存在着可能性。
此前,一家国外对话分析创业公司Gong也曾做过人工智能检测讽刺的研究。
研究人员Lotem Peled创建了一个神经网络,主要是收集对话数据并自动尝试理解,而不需要程序员进行过多的干预。
然而,其设计的AI往往很难辨别人们说的话中是否有讽刺。