近年来,随着我国交通事业的迅猛发展,修建了许多大跨度、特大跨度桥梁跨越峡谷、海峡、陆岛和大江大河。悬索桥是跨越能力最大的桥型之一,而吊索作为悬索桥的主要传力构件,为纤细构件,在不同环境中对于损伤是最为敏感的构件。材料性质、使用环境和施工等因素,空气中的氧化气体以及雨水等进入索体,易造成钢丝的腐蚀;车辆荷载、风荷载、雨振风振等动力作用,导致索体钢丝承受循环荷载作用,导致其疲劳失效,因此,吊索的寿命远小于桥梁结构的寿命。例如,英国克莱夫顿大桥曾经更换过长吊索和短吊索,如图1所示。
图1a 英国克莱夫顿大桥长吊索更换
2009年,江阴大桥由于短吊索轴套磨损异响的问题,已经对52根短吊索(钢丝绳)进行了更换,并形成了成熟安全的“单吊点”施工工艺。但是由于长吊索(平行钢丝)的特殊性,采用同样的更换技术,在松弛同样索力的情况下,必然会导致更大的应力场变化,损伤主缆和主梁,从而影响结构安全。大桥自1999年建成通车,距今已19年,而吊索设计寿命为25年,为了进行技术储备和可能出现的应急维修,有针对性地分析研究长吊索更换技术具有非常重要的意义,可以为大桥运营后期的长吊索批量更换提供依据。
图1b 英国克莱夫顿大桥短吊索更换
计算荷载 建立模型
江阴大桥主跨1385米,是国内首座跨径超千米的特大型钢箱梁悬索桥,1994年开工建设,1999年10月建成通车。大桥吊索采用销接式,全桥布置170个吊点,每个吊点有两根吊索,共340根吊索,并在每一个吊点的钢箱梁耳板位置设计了预留孔,方便后期吊索更换。其中长度大于10m的长吊索(1#~33#及54#~85#)采用带PE护套的平行钢丝索股,索股由109根5.0mm镀锌高强钢丝构成;长度小于10m的短吊索(34#~53#)采用80IWRC钢丝绳加PE防护套。吊索上、下锚头均为叉形热铸锚,由锚杯与叉形耳板构成,锚杯内浇铸锌铜合金,叉形耳板与锚杯用螺纹连接。
根据吊索内部锈蚀断丝病害检测结果,大桥下游19#N吊索存在渗水现象,疑似锈蚀。所以此次针对下游19#N吊索更换进行有限元分析,该吊索为Φ5-109平行钢丝拉索,长46.99m,设计恒载索力73t,具体位置如图2所示。