这种方式的电路示意图如图4所示。为了能看的直观一些,这里画了一张3D的图纸,为了画出这个示意图,画了好长时间,特别是初级的那个线圈,看上去简单,很费了一番力气!这种结构的特点是多个变压器组合,初级为串联结构,次级独立整流以后再串联。优点是:适合大功率的输出,变压器的升压比不大。缺点是:初、次级对磁芯之间总有一个绝缘要求高,需要多个变压器。
二、整流电路
1,半波多倍压电路
半波多倍压电路有两种结构,一种是图5A的结构,这是基本的也是最常见的倍压整流电路了。这种电路的优点是:结构简单,二极管和电容的电压应力都不高,变压器的输出电压也不算高。缺点是:带负载能力较差,倍压阶数越高则电压跌落越多,最终存在一个极限倍压阶数。超过这个阶数,电压不再升高,反而会下降。另一种是图5B的结构,这种电路的带载能力强一些,但是电容的电压应力很高。
2,全波多倍压电路
电路结构见图6,这其实是半波多倍压电路的拓展结构。可以同时的到正负高压。当然,如果把其中端高压接地,把变压器次级悬浮,也是可以的。这样做的好处是,得到同样的高压,只需要有半波多倍压一半的阶数就可以得到了。那么电压跌落和纹波都小很多。缺点是:假如采用某端高压接地,高压变压器次级悬浮的方式,对高压变压器的绝缘要求很高。假如高压变压器次级接地的话,那么得到的是正负高压,使用上不是很方便。
3,抽头式双半波多倍压电路
电路结构见图7,这种结构的特点是高压变压器的次级带中间抽头。这种结构的优点是:倍压的电压跌落比半波多倍压方式小很多。纹波也小很多。缺点是:变压器的次级需要抽头,输出同样的高压,变压器的次级匝数增加了一倍。元件多,成本高。
4,还有其他拓展或混合式用法
例如抽头式双半波可以拓展为抽头式全波正负多倍压电路,用以得到正负高压。也可以把图5B的结构和图5A的结构混合起来使用。也可以把常规整流方式与倍压整流方式混合使用。正负倍压方式中,也可以正、负阶数不一致。很多场合,我们把变压器和整流电路两种解决手段同时组合使用,例如变压器次级分段,每段分别全波倍压后串联输出等等。
通过二极管和电容组合成电荷泵方式的倍压电路,总的来说不能承受大的输出功率,而且输出电压的上升速率也相对较慢。因为这是一种电荷泵,用牺牲功率的办法来得到高的电压,泵的能力的局限性比较大。
总之,掌握了基本原理,具体到工程案例中,就可以根据实际情况来选择变压器与整流电路的组合方式了。