图4国内一家商用车早期薄膜电容
图5现在控制器常用定制电容
电解电容与薄膜电容的对比
1、电解电容的优点是容量比薄膜电容大;
2、薄膜电容相对于电解电容优势;
3、薄膜电容具有更良好的温度和频率特性;
4、薄膜电容没有极性,能够承受反向电压;
5、薄膜电容额定电压高,不需要串联平衡电阻;
6、薄膜电容采用干式设计,没有电解液泄露的危险,没有酸污染;
7、薄膜电容更低的ESR,更强的耐纹波电流的能力;
8、薄膜电容更强的抗脉冲电压能力;
9、薄膜电容更长的寿命;
10、薄膜电容更加灵活的外形设计,可根据不同的需求进行定制。
图6电解电容与薄膜电容参数对比
母线电容电压的选择
电机控制母线电压除了正常的纹波电压的波动,还包括IGBT动作时电流激烈的变化产生尖峰电压和电机反转时的反电动势,薄膜电容在使用中允许有1.2倍额定电压值的脉冲,理论上可以选择额定电压较低的薄膜电容。
如现在的320V的电机控制器系统一般选用500VDC的薄膜电容,540V的电机控制器系统选用900V或者1000V的薄膜电容。
母线电容容量的计算
在新能源电动汽车电机控制器的应用中,母线电容是以IGBT的载波频率来完成充放电,在一个PWM周期内,IGBT导通时由电池组和电容器同时为电机提供能量,IGBT关断时,电池组向母线电容充电。
我们假设电机控制器的最大输出功率为P,电机控制器的的电路为典型的三相全桥拓扑结构。
在一个开关周期内,母线所提供的能量约为:
W=P/(2f)
其中:
f:IGBT的开关频率。
母线电容一个开关周期内释放的能量为:
Q=1/2*C(U+Δu)2-1/2*C(U-Δu)2=2*C*U*Δu
其中:
U:直流母线电压;
Δu:母线纹波电压;
在极端情况下:Q=W,进一步计算可得:
C=P/(4*f*U*Δu),
一般的,直流母线电压的脉动率为5%,
即纹波电压值:
Δu=U*2.5%
综上可得:
Cmax=P/(4*f*U*U*2.5%)
Cmax值是建立在最极端的情况下,实际应用中,一般认为IGBT开关导通的时候,母线电容提供W/2的能量,即Q=W/2
结合前面的计算公式可得:
Cmin= P/(8*f*U*U*2.5%)
以上计算我们仅供设计参考,在实际应用中更多的电机控制器的母线电容容量的选取接近Cmin的值或者小于Cmin,我们在实际应用中可以根据自己不同的成本和体积综合考虑。
母线电容纹波电流的计算
纹波电流是指流经母线电容的交流分量,电机控制器的输出电流为三相正弦基波电流与高频谐波电流的叠加,两者均会在直流母线侧产生相应的纹波电流。
纹波电流计算公式为:
其中:
为母线纹波电流
M为调制比。