(17)
式中,n为GPS点的个数,Δi为第i个GPS点的几何定位误差,i=1, 2, …,n。
表 2 试验影像定标前的几何精度评价Tab. 2 Accuracy evaluation of study images before the geometric calibration
影像编号 | 检查点个数 | 定标前几何精度/m | ||
距离向 | 方位向 | 平面 | ||
630_4 | 11 | 3.967 | 2.686 | 4.791 |
756_1 | 6 | 6.899 | 1.693 | 7.104 |
986_1 | 7 | 20.400 | 381.378 | 381.923 |
756_3 | 5 | 71.151 | 464.520 | 469.938 |
756_2 | 9 | 69.840 | 463.826 | 469.055 |
370_2 | 7 | 5.705 | 2.240 | 6.129 |
785_0 | 7 | 26.172 | 6.173 | 26.890 |
570_0 | 5 | 19.931 | 114.569 | 116.290 |
048_0 | 8 | 20.969 | 113.488 | 115.409 |
371_0 | 11 | 24.561 | 109.149 | 111.878 |
498_0 | 6 | 22.997 | 106.984 | 109.428 |
表选项
由表 1、表 2可知,不同平台下数据产品的几何定位精度存在较大差异,例如630_4景TSX影像的几何定位精度为4.791 m,而570_0景GF-3影像的几何定位精度为116.290 m。且同平台下数据产品的几何定位精度也有较大差异,例如756_1景TSX影像的几何定位精度为7.104 m,而986_1景TSX影像的几何定位精度为381.923 m。传统几何定标方法通常基于单景影像进行参数标定,然后利用参数改正量标定同平台下的其他影像,但本文试验中对于同平台、不同平台的数据产品,参数改正量均不具备继承性,此时传统定标方法将不再适用。
2.2.1 试验1:稀少控制的多平台星载SAR联合几何定标
根据本文方法对11景SAR影像进行联合几何定标试验。选择630_4景影像为起始主影像,并从中选取5个GPS点作为控制点,从该景影像出发提取主、从影像之间的连接点,利用连接点对从影像进行几何定标,定标后的从影像将作为下一级传递的主影像,以此类推,逐级传递标定每景影像Δt、Δr两个定标参数的改正量。影像之间的传递关系如图 4所示。当全部影像定标完成后,再次使用间接几何定位算法对定标后的SAR影像进行几何精度评价,见表 3。
图 4 影像传递关系Fig. 4 Transfer relation of images
图选项
表 3 试验影像定标后的几何精度评价Tab. 3 Accuracy evaluation of study images after the geometric calibration
影像编号 | 检查点个数 | 定标参数改正量 | 定标后几何精度/m | |||
Δt/ms | Δr/m | 距离向 | 方位向 | 平面 | ||
630_4 | 11 | -0.435 | -3.527 | 0.958 | 1.908 | 2.135 |
756_1 | 6 | -0.548 | -7.664 | 1.605 | 2.388 | 2.877 |
986_1 | 7 | 53.901 | -21.190 | 1.343 | 1.951 | 2.369 |
756_3 | 5 | -65.919 | 71.004 | 1.159 | 2.280 | 2.558 |
756_2 | 9 | -66.004 | 69.955 | 1.237 | 2.137 | 2.469 |
370_2 | 7 | -0.444 | -6.792 | 1.370 | 2.148 | 2.548 |
785_0 | 7 | -0.030 | -25.189 | 3.524 | 6.319 | 7.235 |
570_0 | 5 | -17.582 | -20.827 | 2.673 | 5.479 | 6.096 |
048_0 | 8 | -17.349 | -19.092 | 2.717 | 5.581 | 6.207 |
371_0 | 11 | -16.069 | -20.954 | 4.371 | 4.091 | 5.987 |
498_0 | 6 | -16.438 | -19.268 | 4.143 | 5.767 | 7.101 |
表选项
由表 3可知,几何定标后TSX/TDX影像的几何定位精度优于3 m,GF-3影像的几何定位精度优于7.5 m,SAR影像在定标后可实现高精度几何定位。在暂不考虑几何定标精度的情况下,传统几何定标方法每景SAR影像至少需要1个控制点才能完成几何定标,而本文的11景影像只采用了5个控制点即实现了高精度几何定标,控制点数量极少,属于“稀少控制”,且控制点集中分布于同一景SAR影像(630_4)中,避免了大范围的野外测量作业。整体来看,除起始主影像外,其他影像的几何定标过程均未使用控制点,这为实现SAR影像在无控制点或稀少控制点情况下的大范围、多场景几何定标提供了思路。此外,试验数据的几何定位精度在定标前存在较大差异,传统的几何定标方法将不再适用,而本文方法可最大限度地屏蔽不同卫星平台的影响,因此该方法具有较好的通用性。
几何定标后不同平台下SAR影像的几何定位精度仍存在一定的差距,GF-3平台下的几何定位精度明显低于TSX/TDX平台。对不同平台下影像的几何定位精度进行统计并求均值,可知TSX、TDX和GF-3影像对应的几何定位精度均值分别为2.460 m、2.525 m和6.525 m,其中TSX与TDX影像的几何定位精度相差不大,而GF-3影像相比于二者则有较大差距。造成这种差距的原因主要有两方面:其一,GF-3影像的分辨率低于TSX和TDX影像,这对影像刺点和连接点匹配的精度均有一定的影响。一般来说,分辨率较高的影像更有利于实现高精度的几何定标;其二,TDX作为TSX的姊妹星,二者在系统参数和成像等方面都比较相近,其几何定位精度也大致相当。但由于我国SAR卫星起步相对较晚,GF-3卫星的几何定位精度与TSX、TDX相比仍有一定差距,虽然几何定标技术可以大幅度提高影像的几何定位精度,但仍受限于平台自身的性能。
由于几何定标后TSX和TDX影像的几何定位精度相差不大,现结合二者分析不同级传递对几何定标结果的影响。按照传递关系选取两组数据:第一组,依次选取影像630_4、986_1、370_2,其几何定标后的几何定位精度分别为2.135 m、2.369 m、2.548 m;第二组,依次选取影像630_4、756_2、756_1,其几何定标后的几何定位精度分别为2.135 m、2.469 m、2.877 m。可以看出,影像的几何定位精度随着逐级传递而依次降低,这是由于每一级影像的几何定标都必然存在一定的误差,而逐级定标的过程使得误差不断的传播和累积,导致定标后影像的几何定位精度逐渐降低。因此,当影像数量较多时,应合理地设计影像之间的传递关系,尽量使传递级别处于相对较低的水平,以确保整体可以达到较好的几何定标精度。
试验区域内兼有平原和高山地,为了分析不同高程对几何定标结果的影响,现统计3组定标后影像的几何定位精度。同时,考虑到不同级传递对几何定标精度会有影响,因此每组影像需保证处于相同的传递级别。第1组,选取一级传递TSX/TDX影像756_2、756_3,其平均高程分别为32.110 m、448.793 m,几何定位精度分别为2.469 m、2.558 m;第2组,选取二级传递GF-3影像371_0、570_0,其平均高程分别为32.089 m、489.643 m,几何定位精度分别为5.987 m、6.096 m;第3组,选取二级传递TSX/TDX影像756_1、370_2,其平均高程分别为9.464 m、282.103 m,几何定位精度分别为2.877 m、2.548 m。可以看出,每组数据中的平均高程相差较大,但定标后的几何定位精度相差较小,差值均小于0.5 m。就本文而言,不同地形条件对几何定标结果的影响主要归因于STRM在不同地形条件下的高程精度差异,SRTM的高程精度越高,则连接点的大地坐标越精确,对应的几何定标精度也会相应提高。一般而言,高山地条件下的SRTM高程精度低于平原地区,但由图 3可知在高山地条件下包含分布于较平坦区域的影像连接点,在平原条件下也包含分布于较陡峭地区的连接点,这在一定程度上抵消了SRTM在不同地形条件下的高程精度差异,因此不同地形条件对几何定标结果的影响不大。
传统几何定标方法一般选取角反射器作为参考控制目标。角反射器具有极强的后向散射能量,从而可被准确地识别出来,其识别精度一般可达到亚像素级。而试验中所有GPS点的影像坐标均通过人工转刺得到,该过程存在刺点误差,这对SAR影像的几何定标以及精度评价都有一定的消极影响。此外,试验所采用的外部DEM分辨率较低,对几何定标也存在一定影响(将在试验2中进行讨论),但并不影响采用相同DEM进行多景SAR影像几何定标的结果比较。
2.2.2 试验2:外部数据对几何定标精度的影响
在获取连接点大地坐标的过程中需要使用到外部DEM数据,DEM质量的好坏决定了连接点大地坐标的精度,这对后续几何定标的精度也会产生影响。为确保本文方法的通用性,DEM选用了获取免费、覆盖范围广、精度较高的SRTM数据。如果使用更高精度、更高分辨率的DEM数据,则本文的几何定标精度可能会进一步提高。为对该问题进行研究,试验过程中使用TanDEM-XCoSSC数据生产了三景高精度DEM(TanDEM DEM),其分辨率为12 m,覆盖范围分别对应影像756_2、756_1和370_2。使用GPS点对三景TanDEMDEM和对应区域SRTM进行精度评价。经比较,TanDEM DEM的高程精度(≈2 m)比SRTM高约30%。使用TanDEM DEM作为外部DEM数据进行几何定标,定标后的精度评价见表 4。
表 4 试验影像定标后的几何精度评价Tab. 4 Accuracy evaluation of study images after the geometric calibration
影像编号 | 检查点个数 | 定标后几何精度/m | ||
距离向 | 方位向 | 平面 | ||
756_2 | 9 | 1.348 | 1.524 | 2.035 |
756_1 | 6 | 1.333 | 2.151 | 2.531 |
370_2 | 7 | 1.458 | 1.943 | 2.429 |
表选项
由表 4可知,采用更高精度、更高分辨率的TanDEM DEM数据进行几何定标,756_2、756_1和370_2景影像的几何定位精度分别提高了0.434 m、0.346 m和0.119 m。证明高精度、高分辨率的DEM数据有利于实现更高的几何定标精度。
另一方面,本文基于5个控制点对多景SAR影像进行几何定标,这5个控制点大致分布于630_4景影像的4个角点(N1~N4)和中心点(N5),点位分布及编号如图 3所示。控制点的数量可能会对几何定标精度产生影响,现对该问题进行研究。首先,从5个控制点中依次选取1~5个控制点进行组合,共有31种组合方式(C51 C52 C53 C54 C55);然后,使用组合后的控制点对630_4景影像进行几何定标;最后,使用11个GPS检查点进行几何定标精度评价,如图 5所示。
图 5 不同控制点组合方式下的几何精度评价Fig. 5 Accuracy evaluation of different GCP combinations
图选项
由图 5可知,当使用N3或N4号单个控制点进行几何定标时定标精度较低,而后续几何定标精度相对较差的控制点组合方式(如13、14、34、134、345、1345)均与N3或N4号控制点相关,说明精度较差的控制点不利于实现高精度的几何定标。同时也应注意到,控制点组合方式下的几何定标精度优于单独使用N3或N4号控制点,说明当多个控制点进行组合时,高精度的控制点会在一定程度上弥补低精度的控制点,从而降低个别精度较低的控制点对最终几何定标结果的干扰。当使用1~2个控制点时,几何定标精度变化较大,精度差值最大可达到1.5 m左右;当使用3~5个控制点时,几何定标精度趋于稳定,精度差值可控制在0.5 m左右。因此,建议使用3~5个控制点进行几何定标,通过增加多余观测以降低低精度控制点的干扰,保证几何定标精度的稳定性和可靠性。
3 结论
随着国产SAR卫星的陆续发射,迫切需要对星载SAR几何定标技术进行深入研究,实现国产星载SAR影像的高精度几何定位,推进国产星载SAR的实用化。本文基于R-D几何定位模型,分析了几何定位精度的影响因素,建立了几何定标模型。在此基础上,提出了一种稀少控制的多平台星载SAR联合几何定标方法,使用3景TerraSAR-X、3景TanDEM-X、5景高分三号影像进行几何定标试验,并利用82个GPS点进行精度评价。结果表明定标后TSX/TDX影像的几何定位精度优于3 m,GF-3影像的几何定位精度优于7.5 m,提高了多源SAR影像的几何定位能力,在实际数据处理和应用中具有参考价值,尤其是对后续做多场景的DOM或DEM融合等都具有实际意义。此外,本文依然有诸多问题有待进一步研究,例如在逐级定标过程中如何对传播误差进行约束和改正;由于卫星左右视角不同,导致升降轨影像之间存在一定的几何畸变,特别是在山区,如何减小畸变对连接点匹配所造成的影响。后续研究工作将主要从这两方面展开,为本文的多平台联合几何定标研究提供更有利的支撑。
致谢:特别感谢德国宇航中心提供的TerraSAR-X、TanDEM-X数据(CAL_VAL6993)。
【引文格式】吕冠南, 唐新明, 艾波, 等. 稀少控制的多平台星载SAR联合几何定标方法[J]. 测绘学报,2018,47(7):986-995. DOI: 10.11947/j.AGCS.2018.20170283
精
彩
回
顾
院士论坛 | 杨元喜:弹性PNT基本框架
李德仁当选国际宇航科学院院士,集5院院士于一身!
论文推荐| 邸凯昌:视觉SLAM技术的进展与应用
院士论坛| 李德仁:遥感双院士的中国梦
论文推荐| 王密:高分辨率光学卫星影像高精度在轨实时云检测的流式计算
《测绘学报》编委金双根当选欧洲科学院院士
学术前沿| 唐新明:雷达卫星自动成图的精密干涉测量关键技术
《测绘学报》 “数字摄影测量与机器视觉专辑”在CPGIS2018北京论坛发布
听李德仁、杨元喜、龚健雅三位院士讲述“我的科研故事”
机器视觉| 晏磊:航空遥感平台通用物理模型及可变基高比系统精度评价
权威 | 专业 | 学术 | 前沿
微信投稿邮箱 | song_qi_fan@163.com
微信公众号中搜索「测绘学报」,关注我们,长按上图二维码,关注学术前沿动态。
进群请备注:姓名 单位 稿件编号