过流保护电路
在比电路布线的 I2t 特性给出的时间更短的时间内切断电流,但允许最大负载电流 IB 无限期地流动。
绝缘导体在承载短路电流时的特性,在短路开始后长达 5 秒的时间段内,可大致由以下公式确定:
I2t = k2 S2
这表明产生的允许热量与导体的平方横截面积成正比。
这里:
- t = 短路电流持续时间(秒)
- S = 绝缘导体的横截面积 (mm2)
- I = 短路电流 (A rms)
- k = 绝缘导体常数(k 值在下图中给出)
对于给定的绝缘导体,最大允许电流因环境而异。例如,对于高环境温度(θa1 > θa2),Iz1 小于 Iz2(见下图)。θ 表示“温度”。
过流保护电路
- ISC = 三相短路电流
- ISCB = 额定 3 相,断路器的短路开断电流。
- Ir(或 Irth)[1] = 调节的“标称”电流水平;例如,50 A 标称断路器可以调节为具有保护范围,即类似于 30 A 断路器的常规过电流脱扣水平。
- 复合型:多种保护串联。
- 限功率型:总功率限输出
- 重绕型:初始电流恒定,电压下降到一定值电流开始下降。
- 打型:过流,电流电压降到0,然后开始反复上升。
- 恒流:恒流、压降
- 几种过流保护方式的比较
下图列举了 4 种 过流保护电路方法:
4 种 过流保护电路方法
四、过流保护电路制作1、过流保护电路比较器
过流保护电路种类繁多,电路的复杂性取决于保护电路在过流情况下的反应速度。下面这个电路使用很常见的运算放大器构建一个简单的过流保护电路。
该电路将具有可调节的过流阈值,并且还将具有故障时自动重启功能。由于这是一个基于运算放大器的过流保护电路,
1)LM35运算放大器
这里使用了通用运算放大器LM358,作为驱动单元。在下图中,显示了 LM358 的引脚图。
LM358 运算放大器引脚图
2)RF540N mos管
在本项目中,使用了N 沟道 Mosfet IRF540N,如果负载电流大于 500mA,建议使用合适的 MOSFET 散热器。对于下面这个电路,MOSFET 没有使用散热器。下图是 IRF540N 引脚图 的表示。