我们可以用旋转的方式思考圆锥的形成过程:圆锥半截面绕着对称轴旋转,与此同时,圆锥的重心经过的轨迹是圆弧,如果我们把这个圆弧和半截面面积相乘——
刚好等于圆锥体积!
这是一个巧合吗?还是冥冥中确实有什么规律在支配?于是我开始怀揣着惊喜,开始验证我所知道的旋转体公式,我发现全部正确!就连圆、圆环的面积,也可以用这种方式理解:
圆面积
线段的重心在中点处,故中点经过的弧长为
平环积
于是我“发现”了如下定理——
(帕普斯-古尔丁)旋转几何体体积等于半截面重心旋转时经过的弧长乘以半截面面积
那么怎么理解这个公式呢?
Part2理解这个定理体现了两种思想:平均和运动。不过想要完全说明白,得让我们先回到对长度、面积、体积的思考。
长度是如何定义的呢?我们事先规定单位1,然后其余的长度都是由单位1去度量。面积、体积其实也是如此,我们规定一个单位面积(体积),然后用它去衡量图形的大小。例如一个三行四列的矩形,我们知道它是由个单位正方形组成,于是它的面积就是12. 矩形面积等于长乘宽,就是这么来的。乘法本身就和运动相关,我们同样可以将这12个正方形理解为,一行4个正方形沿列的方向平移了3次。这显然是等效的。
即便是斜向运动,但依然是三层。这就是“高”的几何意义
最早我们理解“点动成线、线动成面、面动成体”,下意识都会将运动理解为平移。例如柱面,就是由底面沿某方向的平移形成。而沿曲线运动的问题一般不是中学生能解决的。
帕普斯-古尔丁定理是研究沿圆运动的定理。它突显出了重心的重要性,而这在平移运动时是隐藏起来的,因为平移运动时,所有的点的移动都是完全一样的。重心体现了“平均”的思想,我们不需要研究旋转体半截面上所有点的移动,只要考虑重心的移动就可以,因为它的移动距离是所有移动的平均值。这点在圆运动中最为明显,请读者自行思考。
再来考虑运动。例如柱面体积公式,即便是平行移动,实际上我们需要考虑位移沿着底面垂直方向的投影——高
当位移刚好和底面垂直时,此时