01
关于材料的基本假定
组成构件的材料,其微观结构和性能一般都比较复杂。研究构件的应力和变形时,如果考虑这些微观结构上的差异,不仅在理论分析中会遇到极其复杂的数学和物理问题,而且在将理论应用于工程实际时也会带来极大的不便。为简单起见,在材料力学中需要对材料作了一些合理的假定。
(1) 均匀连续性假定
均匀连续性假定 (homogenization and continuity assumption) ,假定材料无空隙、均匀地分布于物体所占的整个空间。从微观结构看,材料的粒子当然不是处处连续分布的,但从统计学的角度看,只要所考察的物体几何尺寸足够大,而且所考察的物体中的每一“点”都是宏观上的点,则可以认为物体的全部体积内材料是均匀、连续分布的。根据这一假定,物体内的受力、变形等力学量,可以表示为各点坐标的连续函数,从而有利于建立相应的数学模型。
- 均匀连续问题:微观不连续,宏观连续。
- 连续性假设:从受力构件内任意取出的体积单元内均不含空隙,变形必须满足几何相容条件,变形后的固体内既无“空隙”,亦不产生“挤入”现象。
- 均匀性假设:各点处材料的力学性能相同。对常用工程材料,尚有各向同性假设。
(2) 各向同性假定
各向同性与各向异性:
- 微观各向异性,宏观各向同性;
- 微观各向异性,宏观各向异性。
各向同性假定 (isotropyassumption),假定弹性体在所有方向上均具有相同的物理和力学性能。根据这一假定,可以用一个参数描写各点在各个方向上的某种力学性能(沿不同方向力学性能不同的材料称为各向异性材料,如木材、胶合板、纤维增强材料等)。
大多数工程材料虽然微观上不是各向同性的,例如金属材料,其单个晶粒呈结晶各向异性 (anisotropyofcrystallographic),但当它们形成多晶聚集体的金属时,呈随机取向,因而在宏观上表现为各向同性。
(3) 小变形假定
小变形假定 (assumptionofsmalldeformation),假定物体在外力作用下所产生的变形与物体本身的几何尺寸相比是很小的,甚至可以略去不计。根据这一假定,当考察变形固体的平衡问题时,一般可以略去变形的影响,因而可以直接应用工程静力学方法。
不难发现,在工程静力学中,实际上已经采用了上述关于小变形的假定。因为实际物体都是可变形物体,所谓刚体便是实际物体在变形很小时的理想化,即忽略了变形对平衡和运动规律的影响。从这个意义上讲,在材料力学中,当讨论绝大部分平衡问题时,仍将沿用刚体概念,而在其它场合,必须代之以变形体的概念。此外,以后的分析中还会发现,小变形假定在分析变形几何关系等问题时,将使问题大力简化。
如图,δ 远小于构件的最小尺寸,所以通过节点平衡求各杆内力时,把支架的变形略去不计。计算得到很大的简化。概括起来讲,在材料力学中是把实际材料看作均匀、连续、各项同性的可变形固体,且在大多数场合下局限在弹性变形范围内和小变形条件下进行研究。
02
弹性杆件的外力与内力
(1) 外力
作用在结构构件上的外力包括外加载荷和约束力,二者组成平衡力系。外力分为体积力和表面力,简称体力和面力。体力分布于整个物体内,并作用在物体的每一个质点上。重力、磁力以及由于运动加速度在质点上产生的惯性力都是体力;面力是研究对象周围物体直接作用在其表面上的力。
外力是来自构件外部的力(载荷、约束反力),按外力作用的方式分类:
- 体积力:连续分布于物体内部各点的力,如重力和惯性力;
- 分布力:连续分布于物体表面上的力。如油缸内壁的压力,水坝受到的水压力等均为分布力。
- 集中力:若外力作用面积远小于物体表面的尺寸,可作为作用于一点的集中力。如火车轮对钢轨的压力等。
按外力与时间的关系分类:
- 静载:载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,称为静载;
- 动载:载荷随时间而变化,如交变载荷和冲击载荷。
左:交变载荷;右冲击载荷
03
内力与内力分量
考察两根材料和尺寸都完全相同的直杆,所受的载荷 (FP) 大小亦相同,但方向不同。那么,哪一个容易发生破坏呢?
梁将远先于拉杆发生破坏,而且二者的变形形式也是完全不同的。可见,在材料力学中不仅要分析外力,而且要分析内力。