“花不尽,月无穷。两心同。此时愿作,杨柳千丝,绊惹春风”
立体几何中与多面体相关的外接球问题,在近些年的高考中悄然兴起,多以客观题方式出现,解决此类问题可以有2个策略,其一,利用模型,借助长方体,四面体等几何体,构建立体模型;其二,定位球心位置,通常两个截面的外心垂线的交点,即为球心。事实上如果找到球心位置,自然就找到了半径,外接球的问题自然就可解决。
今天介绍5个结论和8个模型,并配有相应的练习题,如果能依题意选取恰当的模型和结论,相信大家定能在外接球问题上披荆斩棘。
文章最后有本节内容全部题目word版的获取方式
结论1:长方体的外接球的球心在其体对角线的中点处.模型一 长方体
①“墙角模型”,在某个定点处的三条侧棱两两垂直;
方法:将三条侧棱分别看成长方体的长、宽、高,并设为a、b、c,则长方体的体对角线长度则为球的直径!
公式:2R=√(a² b² c² )
例1 一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为( )
【解析】由三视图知该几何体为四棱锥,两两互相垂直,形似“墙角”,而正方体的体对角 线就是其外接球的直径,故外接球的直径,所以2r=√3.