《四元玉鉴》成书于大德七年(1303),共三卷,24 门,288 问,介绍了朱世杰在多元高次方程组的解法——四元术,以及高阶等差级数的计算——垛积术、招差术等方面的研究和成果。
“天元术”是设“天元为某某”,即某某为 x。但当未知数不止一个的时候,除设未知数天元(x)外,还需设地元(y)、人元(z)及物元(u),再列出二元、三元甚至四元的高次联方程组,然后求解。
这在欧洲,解联立一次方程开始于16 世纪,关于多元高次联立方程的研究还是 18 至 19 世纪的事了。
朱世杰的另一重大贡献是对于“垛积术”的研究。他对于一系列新的垛形的级数求和问题作了研究,从中归纳为“三角垛”的公式,实际上得到了这一类任意高阶等差级数求和问题的系统、普遍的解法。
朱世杰还把三角垛公式引用到“招差术”中,指出招差公式中的系数恰好依次是各三角垛的积,这样就得到了包含有四次差的招差公式。
他还把这个招差公式推广为包含任意高次差的招差公式,这在世界数学史上是第一次,比欧洲牛顿的同样成就要早近 4 个世纪。
正因为如此,朱世杰和他的著作《四元玉鉴》才享有巨大的国际声誉。近代日本、法国、美国、比利时以及亚、欧、美许多国家都有人向本国介绍《四元玉鉴》。
美国已故的著名的科学史家萨顿是这样评说朱世杰的:
“(朱世杰)是中华民族的、他所生活的时代的、同时也是贯穿古今的一位最杰出的数学科学家。”
“《四元玉鉴》是中国数学著作中最重要的,同时也是中世纪最杰出的数学著作之一。它是世界数学宝库中不可多得的瑰宝。”
从此中可以看出,宋元时期的科学家及其著作,在世界数学史上起到了不可估量的作用。
除了以上成就外,朱世杰还在他的著作中提出了许多值得注意的内容:
1.在中国数学史上,他第一次正式提出了正负数乘法的正确法则;
2.他对球体表面积的计算问题作了探讨,这是我国占代数学典籍中唯一的一次讨论。结论虽不正确,但创新精神是可贵的;
3.在《算学启蒙》中,他记载了完整的“九归除法”口诀,和现在流传的珠算归除口诀几乎完全一致。
总之,朱世杰继承和发展了前人的数学成就,为推进我国古代数学科学的发展做出了不可磨灭的贡献。朱世杰不愧是我国乃至世界数学史上负有盛名的数学家。
由于朱世杰和其他同时代数学家的共同努力,使宋元时期的数学达到了光辉的高度,在很多方面都居于世界前列。
自朱世杰之后,我国这种在数学上高度发展的局面不但没有保持发展下去,反而很多成就在明、清一段时期内失传。这实在是科学史上的一件憾事。