化学物质qn代表什么,化学中q和k关系

首页 > 经验 > 作者:YD1662024-03-09 10:26:46

图3:植物中H2S、NO和ROS的内源化学信号。

2. 关键的翻译后修饰:巯基化、S-亚硝化和磺酰化

最近的研究表明,蛋白半胱氨酸残基(RSSH)的巯基化是植物H2S信号转导的一个重要机制。由于H2S、NO和ROS介导的蛋白质PTMS都是通过攻击半胱氨酸残基而发生的,因此我们将在这一部分中一起讨论巯基化、S-亚硝化和S-亚磺化。

蛋白质巯基化已被发现参与了S信号通路,在这个过程中半胱氨酸硫醇(RSH)被巯基化成巯基硫醇(RSSH) (图4)。之后,这种后修饰可能会导致靶蛋白的活性、结构和亚细胞定位的功能变化。在哺乳动物中,已证实在各种蛋白质的半胱氨酸残基上存在巯基化现象,如KATP通道。Trp通道,Kelch-like ECH结合蛋白1(KeAP-1)、p66Shc,AGE受体(RAGE),Parkin(一种E3泛素连接酶),核因子JB(NF-JB)和甘油醛磷酸脱氢酶(GAPDH)。Kimura团队的一系列研究表明,在哺乳动物细胞中,H2Sn也可以介导类似于H2S的PTM,而且比NaHS更有效。巯基化的发生通过改变半胱氨酸残基和二硫键的性质来调节相应蛋白质的三维构象,从而影响蛋白质的活性和功能。

近年来,由于先进的检测方法和相应的组学分析,植物巯基化的研究取得了一定的进展。用甲硫磺酸甲酯(MMTS)封闭硫醇,抗坏血酸还原,与Biotin-HPDP连接形成生物素标记蛋白后,RSNO最终形成生物素标记蛋白。Aroca et al.(2015)通过改进的BSM总共检测到106个巯基化蛋白质。随后,他们开发了一种比较和定量的蛋白质组学分析方法,检测Col-0和des1叶片中的内源巯基化蛋白。他们确定了2330个潜在的巯基化靶蛋白。KEGG和GO分析显示可能受巯基化调控的蛋白质主要存在于细胞质和叶绿体中,参与碳代谢、非生物和生物胁迫反应、植物生长发育和RNA翻译等过程。对des1和Col-0巯基化蛋白的差异分析强调了DES1产生的H2S的重要性,它启动了巯基化并调节下游信号。不出所料,DES1产生的H2S诱导了S-巯基化,参与了拟南芥气孔运动的调节。在气孔对脱落酸(ABA)诱导的反应过程中,DES1能在Cys44和Cys205的H2S作用下自我巯基化,这对H2S信号的放大具有重要意义。此外,可持续的H2S积累可以驱动NADPH氧化酶RBOHD在Cys825和Cys890处的巯基化,增强其产生ROS的能力。同样,SnRK2.6/OST1已被鉴定为在Cys131和Cys137处巯基化,在ABA诱导的气孔关闭过程中激活激酶。值得一提的是,Cys137也可以被S-亚硝化修饰,而不同的是,NO介导的PTM抑制了该激酶的活性。这些发现揭示了半胱氨酸硫醇修饰,特别是巯基修饰在植物气孔运动中的重要性和无限可能性。此外,还发现H2S介导的巯基化还调节其他植物信号转导途径。H2S诱导的巯基化可特异性激活胞质中的CAT、APX和GAPDH,这也是H2S清除ROS的经典酶依赖途径。此外,H2S通过特异性地巯基化拟南芥中ATG4a蛋白酶的Cys170残基来负向控制自噬的进程。这样就阻止了ATG8的翻译后加工和自噬小体的合成。H2S介导的巯基化除对ROS清除有正向调节作用外,还具有一定的负效应。H2S的过度积累降低了F-肌动蛋白束密度和F-肌动蛋白/球状肌动蛋白的比值,因为巯基化发生在ACTIN2的Cys293残基上,从而阻止了肌动蛋白聚合,进而抑制了拟南芥根毛的发育,这与动物实验不谋而合。H2S不仅动态调节肌动蛋白的解聚,而且影响哺乳动物微管蛋白的稳定性。在番茄中,H2S处理能使ACC氧化酶LeACO1和LeACO2巯基化,并抑制它们的活性,表明乙烯诱导的H2S通过巯基化LeACOs负向调节乙烯的生物合成。总体而言,H2S在植物中的生理功能远不止上述几个方面,H2S介导的蛋白质半胱氨酸巯基化的生物学意义值得进一步探讨。

化学物质qn代表什么,化学中q和k关系(9)

图4:蛋白质半胱氨酸残基的多重翻译后修饰。

S-亚硝化是一种NO介导的蛋白质PTM,是半胱氨酸硫醇修饰的另一种类型。S-亚硝化的概念最早是在1994年提出的,意思是接触高浓度的NO会促进蛋白质半胱氨酸残基硫醇(RSH)形成RSNO,从而调节氧化还原的信号转导 (图4),RSNO相对稳定,因此被认为是NO储存和运输的主要形式,但它对强还原剂 (即细胞内的GSH和抗坏血酸) 敏感,对金属离子非常敏感,特别是Fe2 和Cu2 。此外,RSNO还可以与硫醇进一步反应生成二硫化物(RSSR)和HNO,与H2S反应时,产物为HSNO。然而,另一种反应是HNO和蛋白质巯基化物(RSSH)的形成,这在热力学上是不受欢迎的,而一些蛋白质微环境可以促进这一反应。与H2S和NO的相似功能不同,巯基化和S-亚硝化可能对蛋白质功能有不同的调节作用。在哺乳动物的组学研究中,巯基化物和S-亚硝基硫醇蛋白质组被报道有36%的重叠。在植物中,S-亚硝化和巯基化之间的关系已经逐渐被揭示(图4)。NO和H2S在多个途径上存在协同作用,不仅可以促进彼此的酶活性,而且可以缓解各种应激的影响。令人惊讶的是,相对于S-亚硝化,巯基化对SnRK2.6/OST1的影响是相反的,Actin,APX1和GAPDH。S-亚硝化和巯基化在同一位点调节半胱氨酸硫醇(相邻位点的GAPDH),但对其活性有相反的作用(抑制或促进)。在拟南芥中,共有623个候选蛋白被鉴定为S-亚硝化和巯基化。

当蛋白质半胱氨酸硫醇暴露在ROS下时,可以被氧化成亚磺酸(RSOH),即S-亚磺化。然后,RSOH可以进一步氧化,形成不可逆的亚磺酸(RSO2H)和磺酸(RSO3H) (图4)。H2S与磺酸反应生成巯基化物(RSSH),称为巯基化反应。巯基化完成后,RSSH具有双向氧化还原能力,可在硫氧还蛋白(TRX)的作用下还原为硫醇,或在ROS作用下与ROS/RNS快速反应生成加合物(RSSO3H)。RSSO3H也可以被TRX裂解,以恢复游离的硫醇和亚硫酸盐 (图4)。在ROS和TRX的动态作用下,RSH和RSSH共同构建H2S的内生循环,即H2S由细胞回收再利用。RSSO3H的形成也是缓解植物内源ROS和RNS激增的一种适应性短期贮藏方式。值得注意的是,仍然没有确凿的证据表明H2S在巯基化过程中直接作用于半胱氨酸硫醇,比如发现相关的催化酶。因此,RSOH被认为是S-亚磺化、巯基化甚至S-亚硝化的重要中间体。此外,H2Sn可能是H2S诱导巯基化的另一种潜在途径,它是由H2S氧化或由3-MST等酶直接生成S-硫化半胱氨酸残基。在哺乳动物中,先前的研究表明,蛋白质半胱氨酰硫醇的这三种氧化修饰可以相互转化,当其中一种诱发信号占主导地位时,相应的修饰更有可能发生在关键的半胱氨酸位点上。这些结果表明,H2S、NO和H2O2诱导的修饰模式具有强烈的剂量依赖性,这可能解释了为什么使用外源供体时下游信号响应要强烈得多。有趣的是,在没有剂量效应干扰的情况下,这三种氧化修饰在氧化能力上也存在差异,顺序为S-巯基化(RSSH) > S-亚硝酰化(RSNO) > S-亚磺化(RSOH),这不仅说明了氧化半胱氨酸硫醇的中介作用,而且突出了S-巯基化在半胱氨酸残基修饰竞争中的优先地位。因此,这三种基于半胱氨酸硫醇的修饰似乎是相互调控和相互转化的。对于哺乳动物的MST,半胱氨酸Cys247上稳定的巯基化物可以被H2O2氧化成半胱氨酸-硫代磺酸盐、半胱氨酸硫代磺酸盐和半胱氨酸硫代磺酸盐,然后TRX可以将这些修饰的半胱氨酸转化为未修饰的半胱氨酸。最近,在拟南芥的1000多种蛋白质上共鉴定出1537个S-磺化位点。与人类S-磺基化数据集相比,提供了155个保守的S-磺化半胱氨酸,包括拟南芥MAPK4的Cys181。RSOH不仅是半胱氨酸硫醇亚磺化调控的特异性蛋白,也是三种修饰动态调控的基础。此外,跨不同数据库的比较将有助于识别受三重调控调控的目标蛋白。


获取更加详细内容请阅读原文:

文章链接:https://doi.org/10.1007/s42994-021-00035-4

补充信息下载:https://static-content.springer.com/esm/art:10.1007/s42994-021-00035-4/MediaObjects/42994_2021_35_MOESM1_ESM.docx

上一页123末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.