椎体的体积公式
应用祖暅原理研究半球(半径为R)的体积计算:
设平行于大圆且与大圆的距离为 ι 的平面截半球所得圆面的半径为 r,r = √( R²-ι² ),于是截面面积
S1 = π r² =π (R²-ι²) = πR² - πι²
S1 可以看成是在半径为 R 的圆面上挖去一个半径为 l 的同心圆,所得圆环的面积。
半圆的体积研究
取一个底面半径和高均为 R 的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与半球放在同一水平面上。用任一水平面去截这两个几何体,截面分别为圆面和圆环面,圆环大圆半径为 R ,小圆半径为 ι,则面积S2 = πR²-πι²=π (R²-ι²),则 S1 = S2 。根据祖距原理,这两个几何体体积相等。
球的体积