积的末两位数是“尾×尾”,前面是“头×头 尾”。
例1和例2介绍了两位数乘以两位数的“同补”或“补同”形式的速算法。当被乘数和乘数多于两位时,情况会发生什么变化呢?
我们先将互补的概念推广一下。当两个数的和是10,100,1000,…时,这两个数互为补数,简称互补。如43与57互补,99与1互补,555与445互补。
在一个乘法算式中,当被乘数与乘数前面的几位数相同,后面的几位数互补时,这个算式就是“同补”型,即“头相同,尾互补”型。例如70 77×70 23, 因为被乘数与乘数的前两位数相同,都是70,后两位数互补,77+23=100,所以是“同补”型。又如1 48×1 52,23 8×23 2等都是“同补”型。
当被乘数与乘数前面的几位数互补,后面的几位数相同时,这个乘法算式就是“补同”型,即“头互补,尾相同”型。例如,73 4×27 4,98 26×2 26,6 81×4 81等都是“补同”型。
在计算多位数的“同补”型乘法时,例1的方法仍然适用。
例3 (1)702×708=? (2)1708×1792=?
解:(1)
(2)
计算多位数的“同补”型乘法时,将“头×(头 1)”作为乘积的前几位,将两个互补数之积作为乘积的后几位。
注意:互补数如果是n位数,则应占乘积的后2n位,不足的位补“0”。
在计算多位数的“补同”型乘法时,如果“补”与“同”,即“头”与“尾”的位数相同,那么例2的方法仍然适用(见例4);如果“补”与“同”的位数不相同,那么例2的方法不再适用,因为没有简捷实用的方法,所以就不再讨论了。
例4 2865×7265=?
解:
二、训练巩固
计算下列各题:
1. 68×62 = 2. 93×97 =
3. 27×87 = 4. 79×39 =
5. 42×62 = 6. 603×607 =
7. 693×607 = 8. 4085×6085 =
注意:如果您想要下载本文教材,请发私信告之需要几年级的第几讲文档。人工整理文档不容易啊,请大家关注、点赞、转发,谢谢!