风洞模拟小实验中的流线示意 | 图源网络
也即空气倾向于沿着壁面流动。这样一个过程导致了一个非常重要的结果:空气经过机翼后,将会向下偏折。(你可能会想起一个熟悉的名字:康达效应Coandǎ effect)。
(你继续说,我在听)
那么一个简单的图像这就来了!不严格地想,既然机翼把空气往下排,就给空气施加了向下的力,相应地,机翼将会受到升力!在较为简单的情形下,这个图像也可以不严格地作为判断是否能产生升力的简易判据,而且很好用。比如风筝这样的薄板为什么会受到升力:
空气经过平板的流线示意图 | 图自[1]
比如,为什么飞机倒过来也能飞。因为机翼倒过来时,我们同样可以调整角度,在康达效应下,产生向下偏折空气的效果。
从直观的角度讲,“向下偏折空气”的看法还是挺好用的。当然,这并不严格。更严格的流体力学计算表明,导致升力产生的实际上是环量(库塔-儒可夫斯基环量升力定理),即环致升力或者说涡致升力(香蕉球等亦可作此解释)。机翼前行时使得划过的空气形成了涡,相应地机翼上形成了方向相反的附着涡,正是这个涡,使得机翼获得了升力。总有科普文章说“飞机为什么能飞起来?直到今天,科学家仍然没有答案”,怎么可能嘛,不过理解上需要一定门槛倒是可能的,因而难以达成共识。(为了不影响阅读节奏,我们更多的细节放在文末附录,这里只做简要介绍,欢迎大家一起讨论)。
我们来考虑机翼的实际情况,低速翼型通常为圆头尖尾形状,定义机翼的弦与风速的夹角为攻角。
攻角示意图 | 图源网络
为了描述产生升力的效率,我们将关于飞行速度以及机翼面积这些明显成正比的项除掉,定义升力系数:
其中,称为动压,为机翼特征投影面积(三维)或特征长度(二维)。
在一个比较简单但足够广泛的情形下,通过求解势流方程,可以得到升力系数和攻角有个相当简单的关系:
也即,和攻角成线性关系!这和实验在小攻角下吻合地相当之好(考虑机翼的有限大尺寸,比例系数实际上略低于理论值)。