二元隐函数求偏导,怎样求二元函数的偏导

首页 > 大全 > 作者:YD1662022-12-18 08:54:40

下的条件极值,用Lagrange乘数法求解

The stagnation point is outside the circle, and there is no stagnation point inside the circle, so the extreme value is not taken. Next consider the highest value on

二元隐函数求偏导,怎样求二元函数的偏导(17)

. This is the conditional extreme value under the constraint bar, which is solved by the Lagrange multiplier method.

In[3]:= Clear[x,y,F,t];F[x_,y_,t_]:=f[x,y] t(x^2 y^2-25);

s=Solve[{D[f[x,y,t]==0,D[f[x,y,t]==0,y],D[F[x,y,t]= =0,t]],{x,y,t}}

Out[3]={{t->-3,x->-3,y->4},{t->1,x->3,y->-4}}

In[4]:= F[x,y]/.s[[1]]

Out[4]=25

In[5]:= F[x,y]/.s[[2]]

Out[5]=-75

今天的分享就到这里啦

That's it for today's sharing

散会

Let's adjourn

参考资料:网络

翻译:Google翻译

本文由LearninglYard学苑原创,部分资料来自网络,若有侵权请联系

如果您对今天的文章有独特的想法,欢迎给我们留言,让我们相约明天,祝您今天过得开心快乐

上一页12345末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.