3倍根号下45化简,3根号48的化简方法

首页 > 大全 > 作者:YD1662022-12-19 00:44:56

2.公式的常见变形(和差化积、积化和差公式)

3倍根号下45化简,3根号48的化简方法(5)

考向分析

考向一 三角函数式的化简

1.化简原则

(1)一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;

(2)二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;

(3)三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.

2.化简要求

(1)使三角函数式的项数最少、次数最低、角与函数名称的种类最少;

(2)式子中的分母尽量不含根号.

3.化简方法

(1)切化弦;

(2)异名化同名;

(3)异角化同角;

(4)降幂或升幂.

【方法技巧】

(1)三角化简的常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.

(2)三角化简的标准:三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.

(3)在化简时要注意角的取值范围.

考向二 三角函数的求值问题

1.给角求值

给角求值中一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察会发现非特殊角与特殊角之间总有一定的关系.解题时,要利用观察得到的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数,从而得解.

2.给值求值

已知三角函数值,求其他三角函数式的值的一般思路:

(1)先化简所求式子.

(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手).

(3)将已知条件代入所求式子,化简求值.

3.给值求角

通过求角的某种三角函数值来求角,在选取函数时,有以下原则:

(1)已知正切函数值,则选正切函数.

3倍根号下45化简,3根号48的化简方法(6)

4.常见的角的变换

(1)已知角表示未知角

3倍根号下45化简,3根号48的化简方法(7)

(2)互余与互补关系

3倍根号下45化简,3根号48的化简方法(8)

上一页123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.