几个世纪以来,一些数学问题一直在困扰着我们,尽管近来超级计算机的出现让其中的一些难题取得了一些新进展,例如“三方求和”问题,但数学界仍然存在10大悬而未解的难题。
1.科拉兹猜想
科拉兹猜想
科拉兹猜想又称为奇偶归一猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1。
澳大利亚数学家陶哲轩
本月初,澳大利亚数学家陶哲轩对科拉兹猜想有了一个接近解决方案,但这个猜想仍未完全解决。科拉兹猜想称,任何正整数,经过上述计算步骤后,最终都会得到1,可能所有自然数都是如此。
目前已知数目少于1万的,计算最高的数是6171,共有261个步骤; 数目少于10万的,步骤中最高的数是77031,共有350个步骤; 数目少于100万的,步骤中最高的数是837799,共有524个步骤; 数目少于1亿的,步骤中最高的数是63728127,共有949个步骤; 数目少于10亿的,步骤中最高的数是670617279,共有986个步骤。但是这并不能够证明对于任何大小的数,这猜想都能成立。
2.哥德巴赫猜想
将一个偶数用两个素数之和表示的方法,等于同一横线上,蓝线和红线的交点数。
哥德巴赫猜想是数学界中存在最久的未解问题之一。它可以表述为:任一大于2的偶数,都可表示成两个素数之和。例如,4 = 2 2;12 = 5 7;14 = 3 11 = 7 7。
也就是说,每个大于等于4的偶数都是哥德巴赫数,可表示成两个素数之和的数。