整体融合定位过程可以分为PDR模块、Wi-Fi RTT测距模块和UKF融合模块。
PDR模块处理多传感器数据,加速度计获得的三轴加速度信息取模值后输入步频探测模块进行步子探测,若探测到有效步子,则将加速度特征信息输入步长估计模块,最后输出估计的步长信息。磁力计获得的三轴地磁强度信息取模值后输入航向确定模块,最后计算得到的设备航向角信息。
Wi-Fi RTT测距模块处理Wi-Fi RTT测距数据,在智能手机接收到三个及以上Wi-Fi基站的 RTT测距数据后,即可利用LS算法进行定位解算获得定位结果,作为UKF融合模块初始位置。
UKF融合模块处理PDR模块输出的行人步长、航向角信息、陀螺仪输出的角速度信息以及Wi-Fi RTT测距模块输出的初始位置、距离信息。UKF滤波器初始化成功后,利用步长和步频计算得到的行人运动速度信息、航向角信息、角速度信息及距离信息作为量测值参与UKF解算,实现实时定位。
本文认为该融合定位算法中的系统噪声与观测噪声均为加性噪声,并假定他们均为理想的高斯白噪声。此外,本文认为各噪声均相互独立,即噪声方差阵为对角阵。
4定位实验及结果分析4. 1 实验描述
4. 1. 1 实验设备
1)Wi-Fi RTT基站。Wi-Fi RTT基站是Compulab发售的WILD Wi-Fi。硬件方面,WILD由Compulab 之前发售的Fitlet 2设备搭载一个英特尔无线网卡及两个外置天线组成。软件方面,WILD运行在Debian GNU/Linux系统上。
图8 Wi-Fi RTT基站 WILD
2)移动定位终端。Google Pixel 3手机(Android 9系统)。
4. 1. 2 实验环境
定位实验在东西向长度约为23 m,南北向宽度约为7 m的长方形室内展厅进行,展厅左侧有一弧形立牌遮挡物。四个Wi-Fi RTT基站分别安装在室内空间的四角,其部署情况如图9所示,定位过程中,设置程序约0.3 s可获取一组Wi-Fi RTT测距数据,Wi-Fi RTT基站之间独立工作,互不影响。Wi-Fi RTT定位解算在图中以基站1平面位置为原点的东北平面坐标系下进行。已知房间内两个控制点的WGS84位置坐标,通过全站仪测量可以得到4个Wi-Fi RTT基站的准确位置坐标。真实实验环境如图10所示。
图9 实验环境(展厅)及Wi-Fi RTT基站位置平面图