图 20. EVS 中像素间距的趋势。
C. 不可见光成像
堆叠器件技术还有助于在混合集成中使用非硅光电探测器实现不可见光成像。具有混合集成的非硅光电探测器的示例包括 InGaAs 光电探测器、Ge-on-Si光电探测器和有机光电导膜。在本节中,总结了使用 Cu-Cu 混合键合的 InGaAs 传感器的最新成果。
工业、科学、医疗和安全应用对短波红外 (SWIR) 范围(即 1000 到 2000 nm 之间的波长)成像的需求一直在增加。InGaAs 器件已用于 SWIR 传感器,因为它们在 SWIR 范围内的吸收特性是硅基器件无法覆盖的。在传统的 InGaAs 传感器中,光电二极管阵列 (PDA) 的每个像素通过使用凸块的倒装芯片混合连接到读出集成电路 (ROIC)。由于凸块的可扩展性有限,这种结构通常使细间距像素阵列的制造复杂化。2019 年,推出了一种 InGaAs 图像传感器,其中 PDA 的每个 5-µm 像素使用 Cu-Cu 键合连接到 ROIC。InGaAs/InP 异质结构在直径小于 4 的市售小型 InP 衬底上外延生长。如图 21 所示,外延 InGaAs/InP 晶圆被切割成芯片,并使用 III-V 裸片到硅晶圆工艺转移到大型硅晶圆上。在制造 Cu 焊盘后,III-V/Si 异质晶片使用 Cu-Cu 键合将每个 III-V 像素连接到 ROIC 与 ROIC 混合。图 22 显示了倒装芯片凸块的接触间距趋势和 InGaAs 传感器的 Cu-Cu 键合。使用凸块的倒装芯片混合是制造 InGaAs 传感器的传统方法,由于工艺裕度窄且可重复性差,不适合按比例缩小像素间距。然而,自 2016 年以来,Cu-Cu 杂化已用于 CMOS 图像传感器的大规模生产并具有高产量,是缩放互连到 InGaAs 传感器的关键技术。图 22 还显示了在有雾的场景中涉及检查和安全监控的应用示例。因此,InGaAs 图像传感器通过像素级 Cu-Cu 连接为 HD SWIR 成像创造了条件。
图 21. InGaAs 图像传感器制造的工艺流程图。
图 22. 倒装凸块接触间距趋势和 Cu-Cu 键合以及 InGaAs 传感器的应用实例。
V.智能视觉传感器
在物联网 (IoT) 市场、零售、智慧城市和类似应用中,对具有 AI 处理能力的相机产品的需求正在增长。此类边缘设备上的 AI 处理能力可以解决与纯云计算系统相关的一些问题,例如延迟、云通信、处理成本和隐私问题。具有AI处理能力的智能相机的市场需求包括小尺寸、低成本、低功耗和易于安装。然而,传统的 CMOS 图像传感器仅输出捕获图像的原始数据。因此,在开发具有AI处理能力的智能相机时,需要使用包含图像信号处理器(ISP)、卷积神经网络(CNN)处理、DRAM等能力的IC。
2021 年报道了一种由 1230 万像素和一个专用于 CNN 计算的 DSP 组成的堆叠 CMOS 图像传感器。如图 23 所示,该传感器包含一个集成解决方案,该解决方案具有完整的图像捕获传输到 CNN 推理处理器,并且可以以 120 fps 的速度处理,包括使用 4.97 TOPS/W DSP 的图像捕获和片上 CNN 处理。处理模块有一个用于 CNN 输入预处理的 ISP、一个为 CNN 处理优化的 DSP 子系统,以及一个用于存储 CNN 权重和运行时内存的 8-MB L2 SRAM。图 24 显示了使用 MobileNet v1 的 CNN 推理结果的一些示例。DSP 子系统展示了与 TensorFlow 类似的推理结果。智能视觉传感器能够在传感器上运行完整的 CNN 推理过程,可以通过 MIPI 接口将捕获的图像作为原始数据和 CNN 推理结果输出在同一帧中。该传感器还支持仅从 SPI 接口输出 CNN 推理结果,以启用小型相机,降低系统功耗和成本。传感器上的 CNN 推理处理器允许用户将他们喜欢的 AI 模型编程到嵌入式存储器中,并根据系统使用位置的要求或条件对其进行重新编程。例如,安装在设施入口处时,可用于统计进入设施的访客人数;安装在商店货架上,可用于检测缺货情况;当在天花板上时,它可以用于热图(heat mapping)商店访客。智能视觉传感器有望使用灵活的 AI 模型为各种应用提供低成本的边缘 AI 系统。
图 23. 智能视觉传感器系统框图。