知道频率怎么求频数,频率分布表知道频数怎么求频率

首页 > 实用技巧 > 作者:YD1662023-11-22 22:17:23

知道频率怎么求频数,频率分布表知道频数怎么求频率(1)

初中数学解题,使用方程的时机在哪里

最近在教三角函数,布置了课本上的一道题:

知道频率怎么求频数,频率分布表知道频数怎么求频率(2)

选自北师大版数学九年级下册

​3分钟后,我巡视了一圈,发现不少学生还是无从下手,于是讲解了一种常规的解法,先设SO的长为x,由等腰三角形的“三线合一”性质,推出∠ASO等于60°,以及AO的长为27,然后利用三角函数列出方程,从而得到答案。题目讲完,有个学生吐槽了一句:“我擦,原来要用方程来解啊!”

在普通班,这句吐槽或许代表了不少学生的心声,同时也暴露了一个问题,就是学生缺乏用方程思想解题的意识,简单说,就是不知道什么时候该用方程来解题,什么时候没必要。为什么会这样呢?因为在学习方程应用的时候,许多学生的做法,只是单纯机械地记住,自己做过的哪些题目要列方程,哪些题目不用列,但从未想过其中的缘由。

每次我问起一道题怎么做,学生通常反应很快:“设未知数!”我再问为什么要设未知数,学生就支支吾吾,然后开始调皮了:“因为所以,科学道理!”于是,有些简单的应用题,明明一步列式就能得出结果,他们偏偏大费周折地设未知数;而有些题目虽然平时没见过,但只要列个方程就能搞定,难度也不大,他们还是看半天找不到解题的方向。


知道频率怎么求频数,频率分布表知道频数怎么求频率(3)

学习方程,不仅要会用,还得知道什么时候用

那么,在初中的数学解题中,什么时候应该用方程呢?

我们可以从方程身上找答案。根据中小学数学教材给出的逻辑定义,方程指的是含有未知数的等式,它能用来表示两个数学式(比如两个数、函数、量、运算等)之间的相等关系。初中涉及到的,主要有一元一次方程、二元一次方程(组)、分式方程和一元二次方程四种。

从定义看,方程其实是分析和处理数量关系的工具之一。列方程的根据,就是数量之间的相等关系,我们习惯称为等量关系,而解方程的结果,就是一个数量。由此可见,如果一道数学题涉及求某个数量,我们都可以尝试使用方程,因为要求的数量,与已知条件中给出的数量,十有八九会存在某种关系:如果是等量关系,我们可以列出方程,或者是方程组;如果是不等关系,我们可以列不等式;如果是动态关系,我们还可以列出函数。

数量问题不难辨认,它们的常见特征,就是“求大小”或“求多少”。比如几何问题中的求角度、求线段长度以及求周长面积,概率统计中的求频率、求总体以及求百分比,等等。

知道频率怎么求频数,频率分布表知道频数怎么求频率(4)

数量问题的特征,是“求大小”或“求多少”

不过,有些题目虽然含有等量关系,但我们还是不选择用方程。为什么?因为不划算。

百度百科对“方程”的解释,点出了方程的优势,就是免去逆向思考的不易。

知道频率怎么求频数,频率分布表知道频数怎么求频率(5)

方程的优势,在于免去逆向思考的不易

什么是逆向思考?先来了解与它相对的概念,正向思考。所谓正向思考,就是沿袭某种常规去分析问题,通过已知推进到未知的思维方法,比如已知一个长方形的长为10,宽为3,那么它的面积就是10×3=30,这对学生来说就是正向思考,因为从边长到面积,是认识长方形的自然路径。

那逆向思考呢?逆向思考就是把某种常规的事物或观点反过来思考,从未知回到已知的思维方式。像刚才的例子,如果反过来,一个长方形的面积是30,宽是3,那么它的长就是30÷3=10,这对学生来说就是一种逆向思考。

当然,我们也可以设长方形的长为x,然后根据面积公式列出方程3x=30,同样能得到长是30,但是没必要,因为这里的逆向思考难度不大。

有些情况就不一样,比如多边形内角和公式是180°×(n-1),知道边数n求内角和不难,带入公式就行,可是反过来,知道内角和求边数n,如果不用方程的话,不少学生还是算不过来。

用方程解题,是借助设未知数,把未知暂时变成已知,接着通过正向思考找出等量关系,列出方程,再通过解方程得出结果。整个过程,本质上是把对问题的逆向思考,转化为列方程求解的正向操作,从而化解逆向思考的难度。

知道频率怎么求频数,频率分布表知道频数怎么求频率(6)

方程解题的本质,是把对问题的逆向思考,转化为列方程求解的正向操作

有的人可能觉得:“为了避免逆向思考,还得多学一个方程,这哪算化解难度?”其实不然,如果没有方程的话,我们在学一条公式的时候,为了应对未来的逆向使用,就要把公式反过来学一下。比如频率=频数÷试验次数,为了应对求频数和求试验次数的情况,我们就要多花点时间,把这条公式反过来做一些练习,比如频数=试验次数×频率,试验次数=频率÷频率。

看上去好像也没花多少精力,但是学的公式一多,这点点滴滴积累起来,也是一笔不小的精力投入。花点时间学方程,我们就能把这笔精力的一大半省下来,学习和研究更有趣的事情,这是一个很划算的选择。

综上可知,解题用不用方程,由正向思考与逆向思考的成本对比来决定。我们在教学中,可以这样引导学生:遇到求大小和求多少之类的数量问题,先尝试列算式解决,如果算式列不出来,就考虑设未知数,然后找等量关系列方程。

我也在教学中发现,只要能意识到尝试设未知数,很多学生都能很顺利地走出解题的第一步。

- End -

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.