求多边形的面积一般常用割补平移法、添加辅助线法、等量代换法等等,但也有一种神秘方法与其内外部的点有关,会数点,就会求面积。看似复杂的问题会变得超级简单的.
计算下面的多边形的面积,与其边上的点和其内部的点有什么关系:
图中可以求出:三角形的面积是2✖️2÷2=2,边上有4个点,内部有一个点。可以用4÷2=2,
梯形的面积为(1+2)✖️2÷2=3,边上有6个点,内部有一个点。6÷2=3。第三、第四个图形也可以用边上的点÷2计算。
再看下图
三角形面积还能用边上的点数÷2吗?不行,计算三角形的面积为:3,可以用边上的点数÷2+1
如果三角形内部有3个点,边上还是4点,这时三角形的面积为4÷2+2=4……
可以发现,方格图中,或点子图中的多边形的面积可以用:
多边形边上的点数÷2+内部的点数-1来计算。
快用这种方式来做一下下面的题目,看看简单不