保龄球指孔贴怎样用,保龄球的知识该怎么弄

首页 > 体育 > 作者:YD1662024-05-02 10:35:18

摘 要 文章集中在球类运动中球的飞行和滚动所涉及的物理。选择了几个人们可能感兴趣的问题,如表面粗糙度和尺寸对球飞行的影响,弧线球和飘球的成因,投篮的角度和速度,斯诺克球台的库高和保龄球球道上油的作用,做了定性或半定量的讲述。文章作者认为,物理研究有助于运动水平的提高,在物理教学中也有助于激发学生的学习兴趣。


关键词 球,空气阻力,边界层,马格纳斯力,摩擦,旋转

篮球、排球、足球、乒乓球、网球、台球和高尔夫球等球类运动是参与人数众多、深受欢迎的体育运动,运动的普及和提高关乎全民的身体素质,也关系到国家的荣誉。在提高运动水平方面,除去要有广泛的群众基础外,基础研究和由此产生的创新也是十分重要的。

笔者对球类运动物理的兴趣是从一个具体问题开始的,即假如足球守门员大力开球,同样的角度和初速度,表面光滑的球和表面粗糙的相比,哪一个飞得更远?笔者和被问到的大多数人一样,基于直觉,认为飞行时光滑球所受空气阻力较小,选择了前者,可惜回答是错误的。少数人认为问题必含玄机,选择了后者,但也说不出原因。笔者为找寻问题的解答,在阅读相关书籍和文献的过程中,逐渐涉及到其他的球类,本文集中在球的飞行和滚动方面,选择了读书所得的几个片段和大家分享,文章就从上面的问题开始。

保龄球指孔贴怎样用,保龄球的知识该怎么弄(1)


图1 足球运动员在大力开球

01


表面光滑的球和表面粗糙的相比,哪一个飞得更远

对球类飞行动力学的研究,开始得较早、工作也较多的是对高尔夫球所做的研究,早在1910年,著名物理学家J. J. Thomson就发表了这方面的研究论文,相继的研究工作导致了为让球飞得更远,在球的表面上采用了布满小凹痕(dimple)的设计,事实上一个表面光滑的球,职业选手击出后的飞行距离,大约只是布满凹痕球的一半。回到我们接触较多的足球,按竞赛规则要求,球的外壳必须是用皮块并通过预先穿好的针眼缝合在一起的,针眼总数约2000个,缝线凹槽深度约1-2 mm,球面上的这些缝线凹槽同样对球的飞行有重要影响。守门员大力开球,将球踢到对方半场是很平常的事,但是如果用光滑球,没有缝线凹槽的功劳,恐怕就不太容易做到了,粗糙的表面可降低空气阻力的道理涉及“边界层”的概念。

对于空气、水和油等具有黏性的实际流体,描述其动力学行为的是Navier-Stokes方程(简写为N-S方程),针对具体的问题,给出相应的初条件和边条件,原则上可得到解答。由于这是一组非线性的二阶偏微分方程组,且具体问题的边条件往往又十分复杂,仅在少数特定情况下才可解,利用沉降的小球测量油的黏性系数是我们熟悉的例子,这是雷诺数ㄍ1的极端情形,=/,其中是流体的密度,是流速,是物体相关的特征长度,这里是球的直径。很小的雷诺数意味着面对的问题属黏性显著占优势的情形:或流体有很高的黏性系数,或对平常流体当问题涉及的尺度很小的时候,此时N-S方程因惯性力项可全部略去而可解,在小球沉降情形,得到的是我们熟悉的描述小球所受阻力大小的Stokes方程。

在球类运动中,涉及的流体是空气,如果将水的黏性系数定为1,重机油的约为60,而空气的则是1/60,属低黏性流体,相应的雷诺数很大,约在10的量级。在大雷诺数情形,对N-S方程的求解是十分困难的课题:如果因黏性系数小而将方程中相应项完全略去,相当于将流体视为无黏性的理想流体,方程可解,但得到的结果往往与实验观测不符;如不略去黏性力项,方程又难于求解。1904年,德国科学家普朗特(L. Prandtl)引入“边界层”的概念,解决了这一难题,是近代流体力学的重大发展之一。

边界层理论的基本想法是,在黏性系数很小的情形,可将整个流场分做两部分处理,黏性只表现在附着于物体表面上的边界层内;从表面向外,边界层中气流的速度从零逐渐加大到与外部气体流速相同,不同速度层间存在摩擦损耗。对于边界层以外的流体,则完全略去黏性力的影响,用理想流体的理论处理,并将得到的解作为边界层外缘的边条件,这样整个问题可得到解决。边界层的厚度约等于/,其中为球的直径。对于足球,取为10,~1mm,这和足球表面的缝线槽深相近,可以预期,缝线槽的存在会对球的空气动力学有重要的影响。

图2(a)给出了在完全略去空气的黏性并将其视为理想流体时球周围流线的截面图。这里为简单起见,将流线直观地理解为一小块空气所走的路径。准确地讲,在这种意义下得到的是流体的迹线,表达同一时刻空间各点流速的方向的流线和迹线,仅在定常流动(steady flow)即流动情况不随时间改变时才是相同的。对于图中,两条平行等距的相邻流线,在接近球体点(流体力学中习惯称之为驻点)时,间距开始缩小,在点处间距最小,其后逐渐加大,恢复到平行等距。在定常流动情形,单位时间流过相邻流线间任一截面的流体质量总是相等的,由此可以知道,从接近球的前端点到球的顶端点,或底部点,气流是加速的,气流进而向点流动,此时是减速的。按照我们熟悉的伯努利(D. Bernoulli)定理,,两点处气体压强要比,两点高,但是从对称性的考虑,在气流中的球体感受到的净压强为零,没有阻力作用在球上。

保龄球指孔贴怎样用,保龄球的知识该怎么弄(2)


图2 球体周围的流线(a)理想流体情形;(b)有边界层存在的情形

图2(b)是球体表面有边界层存在的情形,在图中边界层用虚线画出。从到,和图2(a)一样,边界层和外部气流都是加速的,尽管边界层中存在黏性摩擦导致的能量损耗,倾向于使层内的流体减速,但由于点压强高于点,在压强差的推动下,边界层气流会沿球面前进。从到情况则不同,此时压强是增加的,边界层失去了推动力,无法到达点,而是在点(流体力学中称之为分离点)处和球面分离。分离后的气流是不规则的,形成处于湍流状态的尾流。气流速度进一步增加,边界层中摩擦损耗更大,边界层和球面的分离发生得更早,因而有更宽的尾流。

上述边界层和球面发生分离,存在尾流的状态,是球在飞行中所受阻力的主要来源,因为此时球前后端之间存在压强差,点附近气体的压强要大于分离点间的压强,气流在流动方向上对球有作用力,流体力学称之为压强阻力或形状阻力。此外,边界层内的黏性摩擦也会导致能量的损失,产生摩擦阻力,这两种力合在一起构成对球运动的总阻力。

球体所受空气阻力比例于速度的平方变化,一般写为:

Fd=(1/2)CdρAv ²

图3给出了表面光滑度不同的球的空气阻力系数随雷诺数的变化曲线。可以看到,不论对哪一种光滑度的球,在球速超过相应的临界雷诺数或临界速度后,空气阻力系数急剧下降,原因是此时边界层失稳,层外流速快的气流和接近球面速度较慢的气流混合,推动他们流向球的后端,导致分离点相互接近,尾流变窄,,点之间压差降低,空气阻力下降。这样本节提出的问题的答案是,表面粗糙的球临界雷诺数或临界速度较低,原因是粗糙的表面有助于边界层和外部气流的混合,这正是高尔夫球表面凹痕和足球表面缝线凹槽所起的作用。当然从图3看,即使对表面粗糙的球,在速度(比例于雷诺数)高到一定程度后,空气阻力系数会超过表面光滑的球,粗糙的表面还是使空气阻力系数增加的,情况会有所不同。

保龄球指孔贴怎样用,保龄球的知识该怎么弄(3)


图3 表面光滑度不同的球空气阻力系数随雷诺数的变化(图中Type 4为光滑球,Type 1,2,3的/值分别为12.5x10,5.0x10 和1.5x10 ,其中为粗糙物的高度,为球的直径. 图上边标出的是排球速度为10 m/s和15 m/s的相应位置)

02


弧线球和弧圈球

足球运动员在罚直接任意球或角球时踢出的弧线球(也常称为香蕉球),在空中划出美妙的曲线,绕过人墙飞入球门,令人叹为观止。从力学原理知道,球的转向必定是受到侧向力的结果;从运动员踢弧线球的脚法,我们可以推断,这种力一定和球的旋转有关。

图4给出了球顺时针旋转时周围流线分布的示意。为简单起见,未将边界层画出。从到,和上节所述相同,边界层不会脱离球面。但从到,尽管此时流体失去了压强差的推动,边界层最终会和球表面分离,但由于球的转动,球表面运动方向和气流速度方向一致,会带动着黏附于其上的边界层运动,边界层与球面的分离会推后发生。在球的下方,球表面运动方向和外部气流方向相反,表面层与球面的分离会提前,分离点向点移动。这样,在球转动时,流线以及分离点的位置过渡到非对称的形式,气流也因此在经过球后发生了转向。


保龄球指孔贴怎样用,保龄球的知识该怎么弄(4)

首页 123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.