表2 S13业务场景地图一览表表头参考
赛事阶段 | PCU预估 |
入围赛 | Xw - Yw |
瑞士轮 | Xw - Yw |
淘汰赛 | Xw - Yw |
半决赛 | Xw - Yw |
决赛 | Xw - Yw |
表3 S13赛事各阶段PCU预估
流量预估模型与优化
流量预估模型
将业务核心指标转化为技术指标,指的是利用曝光量/转化率/点击率等转换成技术指标QPS/TPS。S13的业务指标PCU可等价于曝光量,一个业务功能对房间在线用户同时曝光。根据我们的经验,基本可以按照目标QPS=曝光量*转化率1*......*转化率n/分摊时长=PCU*转化率1*......*转化率n/分摊时长。
图4 技术指标QPS/TPS的流量预估模型
下面通过几个典型场景具体说明该模型的运用,以及主房间这类高在线房间遇到的瓶颈问题,我们是如何通过热门房间缓存、流量打散、流量隔离和下滑预加载等技术手段解决的:
进房场景
功能概述:用户从闪屏、首页推荐、全量Push、小黄条等资源位进入主房间时,终端向服务端请求流地址/房间底层信息/历史弹幕等数据,使主房间成为高在线房间,带来单房间热点问题。
QPS预估:总进房QPS=各资源位进房QPS之和。以全量Push为例,Push进房QPS=全量用户数*送达率*点击率/推送时长(全量用户数*送达率=Push曝光量,推送时长=分摊时长)。
图5 进房场景QPS趋势图
技术优化:单房间热点问题使得系统内获取房间维度数据成为瓶颈,优化手段是通过PCU指标高低判定是否为高在线房间,通过将高在线房间加入热门房间内存缓存来承接高并发请求。
图6 高在线房间进房场景优化