同时,扩散模型的多模态和鲁棒性优势,进一步增强了 EquiBot 策略在未知环境中的适用性。
实验结果表明, EquiBot 显著减少了机器人对训练数据的需求,对新场景的泛化能力也大幅提升。比如下面这个收拾行李的任务,被 EquiBot 策略点化的机器人只需要学习 5 分钟的人类演示,就能轻松泛化到新的物体和场景。
论文 3:HumanPlus: Humanoid Shadowing and Imitation from Humans
- 作者:Zipeng Fu, Qingqing Zhao, Qi Wu, Gordon Wetzstein, Chelsea Finn
- 机构:斯坦福大学
- 论文地址:https://arxiv.org/pdf/2406.10454
说起斯坦福开源的 Mobile ALOHA 全能家务机器人,大家肯定印象深刻,ALOHA 做起家务活来那是有模有样:滑蛋虾仁、蚝油生菜、干贝烧鸡,一会儿功夫速成大餐:
这款人形 HumanPlus,也是 ALOHA 团队主要成员的工作。HumanPlus 和 ALOHA 都在探索模仿学习对机器人带来怎样的增益。HumanPlus 更关注设计一套数据处理流程,让人形机器人可以自主学习技能。
该研究首先基于 40 小时的人体运动数据集,通过强化学习在模拟环境中训练低级策略。然后将这一策略迁移到现实世界中,使人形机器人仅使用 RGB 相机即可实时跟踪人体和手部运动,形成 Shadowing 系统。