④y=sin(ωx φ)的对称轴方程是x=kπ π/2(k∈Z),对称中心(kπ,0);y=cos(ωx φ)的对称轴方程是x=kπ(k∈Z),对称中心(kπ 1/2π,0);y=tan(ωx φ)的对称中心(kπ/2,0).y=cos2x→原点对称→y=-cos(-2x)=-cos2x
⑤当tanα·tanβ=1,α β=kπ π/2(k∈Z);tanα·tanβ=-1·α-β=kπ π/2(k∈Z).
⑥y=cosx与y=sin(x π/2 2kπ)是同一函数,而是偶函数,则y=(ωx φ)=sin(ωx kπ 1/2π)=±cos(ωx).
⑦函数y=tanx在R上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,y=tanx为增函数,同样也是错误的].
⑧定义域关于原点对称是f(x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f(-x)=f(x)*,奇函数:f(-x)=-f(x)
奇偶性的单调性:奇同偶反. 例如:ttanx是奇函数,y=tan(x 1/3π)是非奇非偶.(定义域不关于原点对称)
奇函数特有性质:若0∈x的定义域,则f(x)一定有f(0)=0.(0不属于x的定义域,则无此性质)
⑨y=sin|x|不是周期函数;y=|sinx|为周期函数(T=π);
y=cos|x|是周期函数(如图);y=|cosx|为周期函数(T=π);
y=|cos2x 1/2|的周期为π(如图),并非所有周期函数都有最小正周期,例如:y=f(x)=5=f(x k),k∈R .
⑩ y=αcosα bsinβ=√(a² b²)*sin(α β) cosβ=b/a有√(a² b²)≧|y|.
11、三角函数图象的作法:
1)、几何法:
2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).
3)、利用图象变换作三角函数图象.
三角函数的图象变换有振幅变换、周期变换和相位变换等.
函数y=Asin(ωx+φ)的振幅|A|,周期T=2π/|ω|,频率f=1/T=|ω|/2π,相位ωx φ;初相φ(即当x=0时的相位).(当A>0,ω>0 时以上公式可去绝对值符号),
由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)
由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的倍,得到y=sinω x的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用ωx替换x)
由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x)
由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y (-b)替换y)
由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。
4、反三角函数:
函数y=sinx,(x∈[-π/2,π/2])的反函数叫做反正弦函数,记作y=arcsinx,它的定义域是[-1,1],值域是[-π/2,π/2].
函数y=cosx,(x∈[0,π])的反应函数叫做反余弦函数,记作y=arccosx,它的定义域是[-1,1],值域是[0,π].
函数y=tanx,(x∈[-π/2,π/2])的反函数叫做反正切函数,记作y=arctanx,它的定义域是(-∞,+∞),值域是(-π/2,π/2).
函数y=ctgx,[x∈(0,π)]的反函数叫做反余切函数,记作y=arcctgx,它的定义域是(-∞,+∞),值域是(0,π).
暑假班高三补习: