拉氏变换证明怎么理解,拉氏变换证明

首页 > 教育 > 作者:YD1662023-10-31 20:08:24

应用:这里可以联想到我们的电子系统中的时钟信号,做硬件的朋友或有经验,在做EMC的辐射测试时,发现产品电路板在某些频点超标,有经验的同学会很快定位到辐射源。其实这里大概率就是因为周期性的时钟信号造成的,从频率的角度可以看成是其基频的多次谐波的线性叠加,而某个谐波分量在电路线路尺寸满足辐射条件时,就从电路板上脱逸而出,变为电磁波能量向空间传播。所以反向去查该频率可能对应的周期性时钟信号的基频就能很快定位到辐射源,从而解决问题。

说到傅立叶级数是周期性信号可以用傅立叶级数展开,那么是不是任一周期性信号都可以进行傅立叶级数展开呢?答案是否定的,必须满足著名的狄利克雷(Dirichlet)条件

什么是傅立叶变换?

前面说了傅立叶级数,接下来再看傅立叶变换。傅立叶变换之所以称为傅立叶变换,是由于1822年,法国数学家傅立叶(J.Fourier) 在研究热传导理论时首次证明了将周期函数展开为傅立叶级数的理论,并进而不断发展成为一个有力的科研分析工具。

假定周期性信号周期T逐渐变大,则谱线间间隔将逐渐变小,如果外推周期T无限放大,变成无穷大,则信号或者函数就变成非周期信号或函数了,此时谱线就变成连续的了,而非一根一根离散的谱线!那么傅立叶变换正是这种一般性的数学定义:

拉氏变换证明怎么理解,拉氏变换证明(13)

其核函数的两个自变量为t, ,对于一般称为角速度(可以形象地理解为旋转运动的快慢),是表征频率空间的。

上面这两个公式是啥意思呢?在度量空间可积可以理解成其在度量空间能量有限,也即对其自变量积分(相当于求面积)是一个确定值,那么这样的函数或者信号就可以进行傅立叶变换展开,展开得到的就变成是频域的函数了,如果对频率将函数值绘制出曲线就是我们所说的频谱图,而其逆变换就比较好理解了,如果我们知道一个信号或者函数谱密度函数,就可以对应还原出其时域的函数,也能绘制出时域的波形图。

傅立叶变换公式,从理解的角度,可以看成无限多无穷小的能量之和,而傅立叶级数也是各谐波分量的加和,所不同的是,前者相对于频率变量是连续的,而后者相对于频率则是离散的!

拉氏变换证明怎么理解,拉氏变换证明(14)

当然,本文限定讨论时域信号是因为我们电子系统中的应用最为普遍的就是一个时域信号。推而广之,其他的多维度信号也能利用上面定义进行推广,同样在多维空间信号也非常有应用价值,比如2维图像处理、3维图像重建等等。

傅立叶级数与变换的区别?

故而,两者的物理含义不同,且其量纲也是不同的,代表周期信号的第k次谐波幅度的大小,而则是频谱密度的概念。所以答案是这两者从本质上不是一个概念,傅立叶级数是周期信号的另一种时域的表达方式,也就是正交级数,它是不同的频率的波形的时域叠加。而傅立叶变换则是完全的频域分析,傅里叶级数适用于对周期性现象做数学上的分析,傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析,同时也适用于非周期性现象的分析。

什么是拉普拉斯变换?

拉氏变换证明怎么理解,拉氏变换证明(15)

傅立叶拉氏变换联系区别

所以傅立叶变换与拉普拉斯变换的联系就比较容易联系了。

拉氏变换证明怎么理解,拉氏变换证明(16)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.