拉氏变换的优势,拉氏变换的收敛条件

首页 > 教育 > 作者:YD1662023-10-31 19:35:29

拉氏变换的优势,拉氏变换的收敛条件(1)

1.信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。

2.离散信号通常来自于对连续信号的抽样,并且经常是等间隔抽样。

3.连续信号可分为非奇异信号和奇异信号。当信号和信号的各阶导数在整个时间区间都是连续时,称为非奇异信号;当信号或信号的某阶导数存在不连续点(跳变点)时,称为奇异信号

4.动态系统与即时系统:系统在任意时刻的输出只取决于同时刻的系统输入,和系统过去的状态无关,则称为即时系统。如果系统的输出不仅取决于同时刻的系统输入,还取决于系统过去的状态,则称为动态系统。

即时系统不包含记忆元件。例如,对于电路系统,电感和电容能够储能,属于记忆元件,电阻则属于非记忆元件。因此,一个只包含电源和电阻的系统是即时系统,而包含了电感或电容的系统称为动态系统。动态系统用微分方程或差分方程描述,即时系统用代数方程描述。

5.拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏转换。拉氏变换是一个线性变换,可将一个有引数实数t(t ≥ 0)的函数转换为一个引数为复数s的函数。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替常系数微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性、分析控制系统的运动过程,以及提供控制系统调整的可能性。

6.时不变系统和时变系统:如果系统元件的参数不随时间变化,则称为时不变系统;如果系统元件的参数随时间变化,则称为时变系统。对于时不变系统,如果系统激励为e(t)时的系统响应是r(t),那么当系统激励延时为e(t-τ)时,系统响应也应是r(t)的相同时间的延时,即r(t-τ)。

线性系统的时不变特性对应于系统方程(微分方程或差分方程)的常系数。

7.连续时间系统和离散时间系统:当系统的输入(激励)信号和输出(响应)信号都是连续信号时,称为连续时间系统。我们所熟悉的电路系统即为连续时间系统。连续时间系统通常用微分方程或微分方程组来描述。

当系统的输入信号和输出信号都是离散信号时,称为离散时间系统。离散时间系统可以通过一个软件程序来实现,在数字信号处理中大量使用。例如,在数字电度表中,首先对电压和电流进行抽样,得离散电压和离散电流信号,然后则通过实时的数字计算,获得离散的功率信号和电量信号,还可以分析谐波,计算谐波功率和电量。离散系统通常用差分方程或差分方程组来描述。

更多国企招聘资讯查看河北国企招聘网

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.