理发师悖论如何用集合解释,理发师悖论被解决了吗

首页 > 教育 > 作者:YD1662024-04-28 10:55:19

生日问题提出了一种可能性:随机挑选一组人,其中会有两人同天生日。用抽屉原理来计算,只要人群样本达到367,存在两人同天生日的可能性就能达到100%(一年虽然只有365天,但是有366个生日,包括2月29日)。然而,如果只是达到99%的概率,只需要57个人;达到50%只需要23个人。这种结论的前提是一年中每天(除去2月29日)生日的概率相等。

.

.

悖论九鸡与蛋悖论

到底是先有鸡还是先有蛋?

理发师悖论如何用集合解释,理发师悖论被解决了吗(9)

鸡还是蛋这个两难的因果难题可以简述为“先有鸡还是先有蛋?”鸡与蛋悖论也启发了古代哲人对先有生命还是先有宇宙这一系列问题的思考。

传统的文化认为鸡蛋悖论是一种循环因果悖论,要找出某个最初成因毫无意义。人们认为解决鸡蛋悖论的方法恰恰是这个问题最本质的核心所在。一方认为卵生动物在鸡出现前很久就已经存在了,所以是先有蛋;另一方则认为先有鸡,他们认为现在人们所说的鸡不过是驯养的红原鸡的后代。然而,含糊的观点也造成了这个难题含糊的背景。要更好理解这个问题的隐喻含义,我们可以将问题理解成“X得到了Y,Y得到了X,那么是先有X还是先有Y?”地球形成数亿年后,鸡这个物种出现了,鸡又生下了蛋。如果是蛋先出现,那么是什么来坐在上面孵它呢,又是什么来喂养幼年的小鸡呢?

.

.

悖论十失踪的正方形

为什么正方形会无故消失?

理发师悖论如何用集合解释,理发师悖论被解决了吗(10)

失踪的正方形谜题是一种用于数学课的视错觉,有助于学生对几何图形的思考。两张图都用到了一些相似的形状,只不过位置稍有不同。

解开谜题的关键在于图中的“三角形”并非三角形,所有三角形的一条斜边都是弯曲的。这些三角形的斜边看上去似乎是条直线,但实际并不是。所以第一个图形实际上占了32个格子。第二个图形占了33个格子,包括“失踪”的正方形在内。注意在蓝色红色斜边交界处的网格点,如果将它与另一张图的对应交界点比较,边缘稍稍溢出或者低于格点。来自两张图重叠后溢出的斜边导致一个非常细微的平行四边形,占据了刚好一格大小的面积,恰洽是第二张图“消失”的区域。

理发师悖论如何用集合解释,理发师悖论被解决了吗(11)

上一页123末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.