整个数学发展史一共诞生了三次数学史,可谓是环环相扣,毕达哥拉斯学派的希帕索斯发现了无理数,直接对一切数均可表成整数或整数之比的思想观念造成了冲击,在长达 2000 年的时间里,数学家都刻意回避无理数存在的事实。
而牛顿在创造微积分的时候,则引发了第二次数学危机,牛顿对于导数的定义并不太严密,比如说 x2 的导数,先将 x 取一个不为0的增量 Δx ,由 (x Δx)^2 - x^2 ,得到 2xΔx (Δx) ^2,后再被 Δx 除,得到 2x Δx ,最后突然令 Δx = 0 ,求得导数为 2x 。我们知道这个结果是正确的,但是推导过程确实存在着明显的偷换假设的错误:在论证的前一部分假设Δx是不为0的,而在论证的后一部分又被取为0。那么到底是不是0呢?
除此之外,牛顿微积分把“无穷小量看作不为零的有限量而从等式两端消去,而有时却又令无穷小量为零而忽略不计”的漏洞引发了一个这样的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0.但从形式逻辑而言,这无疑是一个矛盾。牛顿后来也未能自圆其说。
两大数学危机的实质其实都是因为实数体系的不完善所导致的。所以魏尔斯特拉斯等人发起了“分析算术化”运动。
魏尔斯特拉斯认为实数是全部分析的本源。要使分析严格化,首先就要使实数系本身严格化。为此最可靠的办法是按照严密的推理将实数归结为整数(有理数)。这样,分析的所有概念便可由整数导出,使以往的漏洞和缺陷都能得以填补。这就是所谓“分析算术化”纲领。
在魏尔斯特拉斯“分析算术化”运动的引领下,戴德金、康托尔包括魏尔斯特拉斯都提出了自己的实数理论。
1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,他将一切有理数的集合划分为两个非空且不相交的子集A和A',使得集合A中的每一个元素小于集合A'中的每一个元素。集合A称为划分的下组,集合A'称为划分的上组,并将这种划分记成A|A'。戴德金把这个划分定义为有理数的一个分割,在这里面,戴德金从有理数扩展到实数,建立起无理数理论及连续性的纯算术的定义。