罗素悖论和理发师悖论,理发师悖论本身有没有漏洞

首页 > 教育 > 作者:YD1662024-04-28 11:03:39

当然了,修补工作也在轰轰烈烈地进行,如果要解决这次危机就必须要建立一个一套更加严密的解决办法才能将这些矛盾统一在一起。

最有名的就是策梅洛-弗兰克尔公理系统。 在1908 年,恩斯特·策梅洛提议了第一个公理化集合论——策梅洛集合论。这个公理化理论不允许构造序数;而多数“普通数学”不使用序数就被不能被开发,序数在多数集合论研究中是根本工具。此外,策梅洛的一个公理涉及“明确性”性质的概念,它的操作性意义是有歧义的。

所以后来通过弗兰克尔的改进后被称为策梅洛-弗兰克尔公理系统。在该公理系统中,由于分类公理:P(x)是x的一个性质,对任意已知集合A,存在一个集合B使得对所有元素x∈B当且仅当x∈A且P(x);因此{x∣x是一个集合}并不能在该系统中写成一个集合,由于它并不是任何已知集合的子集 ;并且通过该公理,存在集合A={x∣x是一个集合}在ZF系统中能被证明是矛盾的。

罗素悖论和理发师悖论,理发师悖论本身有没有漏洞(17)

总而言之,就是策梅洛-弗兰克尔公理系统严格规定了一个集合存在的条件(简单地说,存在一个空集【空集公理】;每个集合存在幂集【幂集公理】;每个集合里所有的集合取并也形成集合【并集公理】;每个集合的满足某条件的元素构成子集【子集公理】;一个”定义域“为A的”函数“存在“值域”【替换公理】等),这样无法定义出悖论中的集合。因此罗素悖论在该系统中被避免了。

但是它并没有从数学的整个基本结构的有效性问题上解决问题,从而从数学的基础性上对整个数学大厦进行修补,数学基础和数理逻辑的许多重要课题还未能从根本上得到解决,所以还存在一定的缺陷,100多年过去了,危机还在持续,数学大厦的地基什么时候才能被夯实,如今看来,还有很远的路要走。

不过,第三次数学危机对整个数学界的发展无疑是起到了巨大的推动作用的,促进了数学基础理论的研究,促进了哥德尔不完全性定理的诞生,也推动了数理逻辑的发展,可以说每次危机的产生就像是一个聚宝盆的诞生,为数学带来新的内容,新的进展,甚至引起革命性的变革。

罗素悖论和理发师悖论,理发师悖论本身有没有漏洞(18)

上一页12345末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.