此时,我们用"雨"来代表今天下雨,"云"来代表早上多云。
当早上多云时,当天会下雨的可能性是 P(雨|云)。
P(雨|云) = P(雨)·P(云|雨) /P(云)
P(雨) 是今天下雨的概率 = 10%
P(云|雨) 是在下雨天早上有云的概率 = 50%
P(云) 早上多云的概率 = 40%
基本的概率情况已经确定,那就简单了
P(雨|云) =0.1×0.5/0.4=0.125
小天:刘老板,不用看天气了,今天下雨的概率只有12.5%,可以去郊游的。
刘强西听完后:行,那赶紧上车!
然而,“小天”算不如天算,你看,天就下雨了。。。
小天尴尬ing
故事到这里还没结束,超模君当时在学习贝叶斯定理的时候,时常会记不住到底是B在前,还是A在前,公式该怎么写。
直到有一次,小天(这个小天是超模君的小天,不是刘强西的小天)看我在写贝叶斯公式,说出:AB AB AB。
所以对于贝叶斯公式,记住AB AB AB,然后再做分组:"AB = A×BA/B"。
最后就变成了这张精美的扑克牌:
什么?没看够?
别急,假如“A”还有两个可能
不知道模友们有没有听说过“假阳性”、“假阴性”这两个词。
某些疾病检测就很喜欢用这两个名词,医学院的同学赶紧拿好小板凳,接下来就是考试重点了。
贝叶斯定理虽然只是一个概率计算公式,但其最著名的一个用途便是“假阳性”和“假阴性”检测。
再丢个栗子。。。
上次没出成郊游,刘强西却在路边捡了一只小流浪猫回京西大旅馆,每天就顾着撸猫。。。
两天过后,刘强西突然浑身发痒,小天就想起来是不是刘强西对猫过敏,于是刘强西就做了一个简单的过敏检测:
对于真的有这种过敏的人,检测有 80% 的机会给回 "有" 的结果;
对于没有这种过敏的人,检测有 10% 的机会给回 "有" 的结果(而这种情况,称之为"假阳性")。
从实际情况看,京西大旅馆的村子有 1% 的人有这种过敏,而刘强西的检测结果是 "有",那么刘强西真的有这种过敏的可能性有多大?