原子是哪些粒子构成的,构成原子的三种粒子是什么

首页 > 教育 > 作者:YD1662024-04-30 15:38:45

这个图表展示了含有Z个质子和N个中子的同位素的半衰期(T½),单位是秒

每一种元素都有一个或多个同位素拥有不稳定的原子核,从而能发生放射性衰变,在这个过程中,原子核可以释放出粒子或电磁辐射。当原子核的半径大于强力的作用半径时,放射性衰变就可能发生,而强力的作用半径仅为几飞米。

最常见的放射性衰变如下:

其它比较罕见的放射性衰变还包括:释放中子或质子,释放核子团或电子团,通过内转换产生高速的电子而非β射线以及高能的光子而非伽马射线。

每一个放射性同位素都有一个特征衰变期间,即半衰期。半衰期就是一半样品发生衰变所需要的时间。这是一种指数衰减,即样品在每一个半衰期内恒定的衰变50%,换句话说,当两次半衰期之后,就只剩下25%的起始同位素了。

能级

原子中,电子的势能与它离原子核的距离成反比。测量电子的势能,通常的测量将让该电子脱离原子所需要的能量,单位是电子伏特(eV)。在量子力学模型中,电子只能占据一组以原子核为中心的状态,每一个状态就对应于一个能级。最低的能级就被叫做基态,而更高的能级就被叫做激发态。

电子要在两个能级之间跃迁的前提是它要吸收或者释放能量,该能量还必须要和这两个能级之间的能量差一致。因为释放的光子能量只与光子的频率有关,并且能级是不连续的,所以在电磁波谱中就会出现一些不连续的带。每一个元素都有一个特征波谱,特征波谱取决于核电荷的多少,电子的填充情况,电子间的电磁相互作用以及一些其他的因素。

原子是哪些粒子构成的,构成原子的三种粒子是什么(9)

一个吸收谱线的例子:太阳的夫朗和斐谱线

当一束全谱的光经过一团气体或者一团等离子体后,一些光子会被原子吸收,使得这些原子内的电子跃迁。而在激发态的电子则会自发的返回低能态,能量差作为光子被释放至一个随机的方向。前者就使那些原子有了类似于滤镜的功能,观测者在最后接收到的光谱中会发现一些黑色的吸收能带。而后者能够使那些与光线不在同一条直线上的观察者观察到一些不连续的谱线,实际就是那些原子的发射谱线。对这些谱线进行光谱学测量就能够知道该物质的组成以及物理性质。

在对谱线进行了细致的分析后,科学家发现一些谱线有着精细结构的裂分。这是因为自旋与最外层电子运动间的相互作用,也被称作自旋-轨道耦合。当原子位于外部磁场中时,谱线能够裂分成三个或多个部分,这个现象被叫做塞曼效应,其原因是原子的磁矩及其电子与外部磁场的相互作用。一些原子拥有许多相同能级电子排布,因而只产生一条谱线。当这些原子被安置在外部磁场中时,这几种电子排布的能级就有了一些细小的区别,这样就出现了裂分。外部电场的存在也能导致类似的现象发生,被成为斯塔克效应。

如果一个电子在激发态,一个有着恰当能量的光子能够使得该电子受激辐射,释放出一个拥有相同能量的光子,其前提就是电子返回低能级所释放出来的能量必须要与与之作用的光子的能量一致。此时,受激释放的光子与原光子向同一个方向运动,也就是说这两个光子的波是同步的。利用这个原理,人们设计出了激光,用来产生一束拥有很窄频率相干光源。

化合价

单个原子的电子层最外层一般被称为价层,其中的电子被称为价电子。价电子的个数决定了这个原子与其他原子成键的性质。原子能发生化学反应的一个统一的趋势是使得其价层全满或者全空。

化学元素通常被写在一个化学周期表中,用来表明它们有周期重复的一些化学性质。通常,拥有相同数量价电子的元素形成一组,在元素周期表中占相同的一列。而元素周期表中的横排则与量子层的电子填充情况相对应。周期表最右边的元素价层都是全满的,因此它们在化学反应中表现出一定的惰性,被成为惰性气体。

物质很多不同的相态之中都存在原子,这些相态都由一定的物理条件所决定,例如温度与压强。通过改变这些条件,物质可以在固体、液体、气体与等离子体之间转换。在同一种相态中,物质也可以有不同的形态,例如固态的碳就有石墨和金刚石两种形态。

当温度很靠近绝对零度时,原子可以形成玻色-爱因斯坦凝聚态。这些超冷的原子可以被视为一个超原子,使得科学家可以研究量子力学的一些基本原理。

测定

扫描隧道显微镜是用来在原子水平观测物体表面的一种仪器。它利用了量子隧穿效应,使得电子能够穿越一些平时不能够克服的障碍。在操作中,电子能够隧穿介于两个平面金属电极之间的真空。每一个电极表面吸附有一个原子,使得隧穿电流密度大到可以测量。保持电流恒定,随着扫描的进行,可以得到一个探针末端的上下位移与横向位移之间的关系图。计算证明扫描隧道显微镜所得到的显微图像能够分辨出单个原子。在低偏差的情况下,显微图像显示的是对相近能级的电子轨道的一种空间平均后的尺寸,这些相近的能级也就是费米能中的局部态密度。

当原子失去一个电子时,该原子就被电离了。这一个多余的电荷就使其在磁场中运行的轨迹发生偏折。这个偏转角度是由原子的质量所决定的。质谱仪就利用了这个原理来测定离子的质荷比。如果一个样品里面有多种同位素,质谱可以通过测量不同离子束的强度来推导每一种同位素的比例。使原子气化的技术包括电感耦合等离子体原子发射光谱以及电感耦合等离子体质谱法。这两种技术都使用了气态或等离子态的样品。

另外一个有局限性的方法是电子能量损失谱,它是通过测量透射电子显微镜中电子束穿越一个样品后所损失的能量。原子探针显像具有三维亚纳米级的分辨率,也可以通过飞行时间质谱仪来鉴定单个的原子。

激发态光谱可以用来研究远距离恒星的元素组成。通过观测到的来自恒星的光谱中一些特殊的波长,可以得到气体状态下原子的量子转变。使用同种元素的气体放电灯,可以得到相同的颜色。氦元素就是通过这种手段在太阳的光谱中被发现的,比在地球上发现早了23年。

核合成

稳定的质子和电子在大爆炸后的一秒钟内出现。在接下来的三分钟之内,太初核合成产生了宇宙中大部分的氦、锂和氘,有可能也产生了一些铍和硼。在理论上,最初的原子(有束缚的电子)是在大爆炸后大约38万年产生的,这个时代称为重新结合,在这时宇宙已经冷却到足以使电子与原子核结合了。自从那时候开始,原子核就开始在恒星中通过核聚变的过程结合,产生直到铁的元素。

像锂-6那样的同位素是在太空中通过宇宙射线散裂产生的。这种现象在高能量的质子撞击原子核时会发生,造成大量核子被射出。比铁重的元素在超新星中通过r-过程产生,或在AGB星中通过s-过程产生,两种过程中都有中子被原子核捕获。像铅那样的元素,大都是从更重的元素通过核衰变产生的。

地球

大部分组成地球及其居民的原子,都是在太阳系刚形成的时候就已经存在了。还有一部分的原子是核衰变的结果,它们的相对比例可以用来通过放射性定年法决定地球的年龄。大部分地壳中的氦都是α衰变的产物。

地球上有很少的原子既不是在一开始就存在的,也不是放射性衰变的结果。碳-14是大气中的宇宙射线所产生的。有些地球上的原子是核反应堆或核爆炸的产物,要么是特意制造的,要么是副产物。在所有超铀元素──原子序数大于92的元素中,只有钚和镎在地球中自然出现。超铀元素的寿命比地球现在的年龄短,因此许多这类的元素都早已衰变了,只有微量的钚-244例外。钚和镎的自然矿藏是在铀矿中通过中子俘获产生的。

地球含有大约 1.33× 10^50个原子。在地球的大气层中,含有少量的惰性气体原子,例如氩和氖。大气层剩下的99%的部分,是以分子的形式束缚的,包括二氧化碳、双原子的氧气和氮气。在地球的表面上,原子结合并形成了各种各样的化合物,包括水、盐、硅酸盐和氧化物。原子也可以结合起来组成不含独立分子的物质,包括晶体和液态或固态金属。

罕见和理论形式

虽然原子序数大于82(铅)的元素已经知道是放射性的,但是对于原子序数大于103的元素,提出了“稳定岛”的概念。在这些超重元素中,可能有一个原子核相对来说比其它原子核稳定。最有可能的稳定超重元素是Ubh,它有126个质子和184个中子。

每一个粒子都有一个对应的反物质粒子,电荷相反。因此,正电子就是带有正电荷的反电子,反质子就是与质子对等,但带有负电荷的粒子。不知道什么原因,在宇宙中反物质是非常稀少的,因此在自然界中没有发现任何反原子。然而,1996年,在日内瓦的欧洲核子研究中心,首次合成了反氢──氢的反物质。

把原子中的质子、中子或电子用相等电荷的其它粒子代替,可以形成奇异原子。例如,可以把电子用质量更大的μ子代替,形成μ子原子。这些类型的原子可以用来测试物理学的基本预言。

上一页123末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.