锂离子电池作为电动车的动力核心,其性能和安全性直接关系到整车质量和行驶里程。电池的充放电性能和循环寿命受到温度的影响。
本文简要介绍了电池发热机理和温度对电池性能的影响,主要综述了基于相变材料的电动汽车电池热管理技术的应用和发展。
从材料角度,文中列举并分析了具有合适相变温度的 PCM 的潜热、导热系数等热物理性质,结论是:有机材料在满足潜热和相变温度的同时,还具备优异的成型性,而其较一般的导热性能和机械性能可通过添加改性剂来增强和优化;
从结构角度,基于相变材料的热管理模块可以在被动模式下实现电芯间更均匀的温度分布、较小的温度波动和较低的能耗,而与传统的空冷、液冷方式结合后,混合热管理系统显示出更好的协同效果。
目前,有关集成相变材料的电池组实验研究仍较少,但已有的计算流体动力学研究表明,借助相变材料,电池温度性能得到了优化和完善。最后分析了该新型热管理技术的发展瓶颈、可行的解决方案和未来研究方向。
电动车电池热管理1.1 锂电池热性能及产热机理
锂离子电池借助锂离子在正负极之间的移动,推动电子在外电路流动而产生电流。锂离子经过固体电解液接触面(SEI)、电解液、隔膜,嵌入和脱嵌电极材料,其释放电能的同时会产生热量。如图 1 所示,锂电池热效应主要包括产热过程和散热过程,其中,产热来自电池内部的电化学反应过程;而散热则是电池与外部环境进行热交换。
图1 锂电池热效应
1985 年,Bernardi 等阐明锂电池产热来自其内部复杂的电化学反应、相变、混合效应、局部热物理特性改变等,根据热力学第一定律,提出了能量平衡模型,推导出电池产热功率为电池输出电功率、内部可逆功和反应熵、混合热和材料相变热之和,用于评价电池热性能和预测温度,其简化形式如式(1)所示:
(1)式中:q为电池产热功率,I为电池工作电流,U 和 V 表示开路电压和电池工作电压,T 为工作温度。该表达式考虑了欧姆损耗和反应熵两项,而忽略了贡献较小的相变热和混合热。
Newman等在 1993 年完善了热力学平衡模型理论,将锂电池的热生成分为欧姆热、极化热和反应热三部分,对应于式(1)第一项的不可逆热,包含了欧姆热、界面上的电荷转移以及传质限制而产生浓度梯度的极化热;第二项为可逆化学反应热。产热的主要来源是内部欧姆内阻和极化内阻,可以作为电池健康状态(SOH)的评估依据,而温度则对内阻有重要影响。
1.2 锂电池模型概述
研究锂电池热性能通常采用建模方式,常用的有电化学-热模型、电-热耦合模型两种。电化学-热模型偏微观,考虑电池内部电化学反应、不同的结构组成、产热来源,即上述介绍的 Newmann 等的工作;而电-热耦合模型则较为宏观和简化,通过建立等效电路中的电压、电流来描述化学反应、电势和浓差的变化,常用等效模型电路如表1 所示。
表1 常用的几种电模型的等效电路
热模型则主要用能量守恒方程、传热方程来描述电热转化和电池单体的热物理过程,并与环境温度建立关系。电-热耦合模型较为简化,能从单体扩展到电池包的系统模型,从而指导散热设计,因此应用较多。电-热耦合模型的关系如图 2 所示。