表6 脂肪酸类 PCM 的热学特性
2.2 电池热管理系统中 PCM 及装置的传热性能增强
为了将电池运行产生的热量及时吸收而达到有效散热,并提高温度分布均一性,电池热管理系统对 PCM 导热性能要求较高,然而石蜡类低温有机 PCM 的导热系数很低(0.1~0.3 W/(m·K)),这是限制 PCM 应用的很大原因。采用多元复合材料体系,其导热系数取决于各组元的起始导热系数和内部结构,能够在保持 PCM 较高的储热容量的同时有效提升材料的导热性能,这是目前增强 PCM 导热性能的基本思路。
增强剂的材料选型一般是导热性良好、多孔结构的碳、金属及其氧化物,主要方法包括:①微观改性。向PCM 中加入导热增强剂或被包覆,例如碳材料、金属及其氧化物的纤维、粉末或者纳米粒子等。②吸附法。将PCM 浸入到多孔泡沫金属或膨胀石墨基体。③直接添加。向 PCM 中添加金属薄片/球体、金属翅片等。
分散混匀法是较常用的手段,通过搅拌将 PCM 和导热剂混匀。Wu 等向融化的石蜡中加入 20%(质量分数) 的经过预处理的膨胀石墨,将导热系数提高到 7.6 W/(m·K);Parameshwaran 等向酯类添加纳米银,将混合体系的导热系数提升了 2.7 倍;Hussain 等采用化学气相沉积法,在多孔镍表面沉积了一层高导热系数(2000~3000 W/(m·K))的石墨烯镀层,再将低导热系数的石蜡浸渍吸附到骨架结构中,所得复合物的导热系数达到了 46 W/(m·K),提高了 23倍。
表7 PCM 复合材料及其性能总结
表7 列举了现有研究案例中采用的复合材料及其性能。通过比较各类导热增强方式,可以得出如下结论:
①从材料角度,金属能显著提升有机材料的导热性能,但也会显著增加系统的总重量,降低复合储热体系的平均储热密度,且价格普遍较为昂贵;而碳纳米管、碳纤维、石墨颗粒、膨胀石墨和纳米石墨片等碳材料具有优异的吸附特性和化学惰性、低体积密度和大比表面积,在显著提升复合材料的导热性能的同时,能够保持体系的形态结构和储热密度。
②从结构角度,高导热系数的纳米粒子能够加快相变过程中材料的熔化/ 固化速率,但很多研究工作证实,这同时也会带来降低复合物相变潜热的负面效应;构造微胶囊主要是利用了对流的导热机理,并且能够解决过冷、相分离、泄露等问题,但是工艺复杂度和成本太高,并不经济;多孔基质吸附法的研究很多,基质如天然矿物、膨胀石墨等广泛易得,并且工艺成熟度高,但是基质本身会在一定程度上降低复合材料的潜热。
除了通过添加导热增强剂,从微观尺度对材料进行导热增强的方案外,将金属薄片、球体以及翅片与换热器设计相结合,也可以进一步强化PCM内部传热。
Abdulateef等通过计算模拟三重管式热交换器以及 Al2O3 纳米颗粒和石蜡复合物传热过程, 结果表明, 采用尺寸经过优化的翅片可以有效缩短石蜡融化和凝固的时长;Singh 等经实验研究了采用添加碳粉、铝翅片和碳翅片三种导热增强方法作用PEG1000 的材料或装置导热系数。
经过研磨的碳粉颗粒尺寸为 10~50 μm,在混合物中的体积占比为 0.78%~2.5%;带铝翅片换热器和碳翅片换热器分别如图 6a、b 所示,其中,铝翅片/PCM 体系中,翅片的体积占比和质量占比分别为22.67% 和41.53%,铝翅片总表面积达 1082 cm2;碳翅片/PCM 体系中,翅片的体积占比和质量占比分别为24.68%和 33.96%,碳翅片总表面积达 981 cm2。
采用自搭建柱状测试装置,测得铝翅片、碳翅片体系的导热系数分别达到 9.4 W/(m·K)和 7.0W/(m·K),显著高于碳粉体系,如图 6c 所示。
图6 (a)碳翅片换热器,(b)铝翅片换热器,(c)导热增强 PCM 的导热系数
导热增强是有机 PCM 材料在实际应用过程中最重要的方面。低导热性容易导致靠近热源部位的材料吸热完全熔化后,该部位的温度急剧上升;而同时远离热源部位的材料还未发生相变。物态不对称会导致材料实际效果大幅下降。目前提高有机 PCM 热导率的研究主要集中在两方面:一是使用高导热的骨架和掺杂;二是在系统层面加入金属强化结构能显著提升体系的导热效果,同时还可增强质地柔软的有机类材料的力学性能。
2.3 PCM 的热机械性能
PCM 作为被动热管理组件和电池模组结合时,须考虑冲击状态下的力学性能。如前面所述的有机类 PCM 力学性能较差,无法满足实际需求。因此,在电池热管理的实际使用中,为了在应用中抵抗电池模块运行时的热力耦合作用以及冲击性能,材料的机械性能也不容忽视。
Alrashdan 等研究了复合 PCM 堆积密度和环境温度对材料热导率、拉压力和爆破强度的影响,材料的热机械行为随浸渍(复合材料制备方法)时间的研究结果如表 8 所示。室温条件下,随着石蜡堆积密度的增加,抗张强度和抗压强度也会随之增大,但是在高温条件下,这种变化趋势会减缓。
然而,石蜡比例的变化对爆破强度的影响则有所不同:在室温条件下,石蜡/膨胀石墨复合 PCM 的爆破强度随着石蜡在复合材料中占比的增加而增大;但是,在高温条件下,石蜡占比的增加反而会导致爆破强度的降低。增强机械性能的方法主要有聚合物掺杂、金属结构增强、微胶囊包覆等。
Lyu等通过添加 30%的低密度聚乙烯到石蜡/石墨复合 PCM中,将复合物的弯曲强度、冲击强度和硬度从 0.115 MPa、3.89 kJ/m2、6.58HD 分别提高到 1.82 MPa、4.26 kJ/m2、23.0 HD。Li 等将石蜡/石墨复合物在 6MPa 压力下注入泡沫铝中,在提高材料热导率的同时,也大幅度提高了材料的韧性与抗压强度。
Dmitruk 等考察了泡沫和蜂窝结构两种铝硅合金插件对增强 PCM 内部传热和降低温度梯度的影响,结果表明,蜂窝结构具有更高的抗疲劳性和抗压强度。
Peng 等综述了有机、无机和复合材料壳体对 PCM 包覆后微胶囊的热导率、热稳定性、机械强度的影响,其中,SiO2、ZnO2、TiO2、CaCO3 等无机包覆能够显著增强机械强度和韧度。
表8 复合 PCM 的热机械行为随浸渍时间的变化
对 PCM 热机械性能的研究有利于促进其在电池热管理中的安全应用,在设计材料封装方式和装置结构时,还需结合热稳定性、相变前后的体积膨胀、材料泄露等实际应用中的问题综合考虑提高材料的机械性能和循环稳定性的有效方式。
基于 PCM 的电池热管理模块3.1 PCM 电池热管理模块设计、组装和测试
PCM 与电池整合,通过利用材料熔化或凝固时的吸放热特性来对电池进行热管理,结合辅助设备和装置,可以形成电池热管理模块。该模块可以将电池组温度有效控制在最佳范围,从而提升电池单体间的温度分布均一性。
其中,PCM 是热管理系统的核心,其相变温度的确定与电池的最佳工作温度相关,材料的用量主要取决于其相变潜热,其热导率影响到电池产热能否被材料快速吸收和模块的均温性。
除提升材料的热导率以外,材料在电池热管理系统中的分布方式对有效导热也有着重要影响,因此需对包含 PCM 的电池热管理模块进行布局设计、试验测试和参数优化。
最早的基于 PCM 的热管理产品由 Al-Hallaj 团队于 2004年开发,如图 7 所示。他们将相变温度为 42~45 ℃、焓值为 127 kJ/kg、热导率为 16.6 W/(m·K)的 PCM/膨胀石墨复合材料填充到用于容纳电池的封闭盒,然后将圆柱状电池插入间隙,构成材料⁃电池模块。经测试,与空气冷却系统相比,该系统能够将电池中心与电池周边的温差从 3 ℃降低至 0.2 ℃,提升了电芯间的温度均一性,有效冷却了电池包。该团队成立了 AlCell Technologies 公司,开发了应用于不同场景的产品。