金镜反应化学方程式,金镜反应的原理

首页 > 教育 > 作者:YD1662024-05-15 00:54:29


室温下的固体热容

大家会发现,似乎固体的摩尔热容都差不太多,都在3R左右(R是一个常数),这件事情在经典热力学里是可以得到证明的,它很好地说明了温度和原子运动能级之间的关系。吸热过程的微观实质就是大量原子获得能量,整体向高能分布移动的过程。

然而像金刚石,硼等材料却显著地低于3R,事实上实验发现固体的热容量随温度降低得很快,当温度趋近绝对零度时,热容量也趋于零。这些现象都是经典热力学所不能解释的,按照经典的理论,摩尔热容应该一直是3R才对。

1906年爱因斯坦利用普朗克的量子假说成功地解释了这一问题,即在低温下大量的原子被冻结在基态,这些原子不再能够参与吸热或放热的过程了,因而看起来有一大堆原子,实际上只有少量激发态的原子还能够正常工作。此外金属中存在自由电子,按照经典的理论,电子在金属中类似一种理想气体的存在,也能贡献相同的热容,也就是说金属的热容应该要比其他离子晶体的热容大一倍,但在实验上也没有观测到这一现象。这一问题是1928年由索末菲(这人虽然没得过诺奖,但是教导过最多诺贝尔物理学奖得主的人)利用费米-狄拉克统计(1926年提出)解决的金属中的自由电子气体问题:电子要想吸热变成更高能量的电子,需要极高的温度才行,所以正常情况下电子也是很少参与热容贡献的。

上述这些问题听起来比较艰深,最后我们再来说一下大家关心的绝对零度到底是怎么回事。在上一节我们已经说到,早在量子力学诞生以前人们就知道绝对零度这个界限了,这是从气体实验外推出来的。量子力学告诉我们,在绝对零度时,所有的原子都占据最低的可能的能量,但并不是没有能量,原子仍具有零点能的振动,这是这些能量(在目前已知条件下)不能再释放出来。

这里还有一个有趣的故事,1924年孟加拉青年玻色提出了著名的玻色统计,最初提交英国的杂志发表但被退回,他一气之下直接讲此稿寄给爱因斯坦,爱因斯坦立刻被吸引并亲自把它翻译成德文并帮助发表。此后爱因斯坦于1924-1925接连发表两篇文章预言了玻色-爱因斯坦凝聚,这个说的是对于玻色气体不需要达到绝对零度,只需要温度低到一定程度,所有的粒子就会全部占据能量为0的态,形成一个“凝聚体”。这个预言对于后来发现液氦超流体有着重要的作用,但直到1995年才真正在实验上实现了碱金属蒸汽的玻色凝聚,这些进展开创了多个物理研究的新领域。

六、熵与涨落——统计物理简介(1865-1912)

在上一节我们说明了,处于热运动的物体无时无刻不在发着光,并初步涉及了量子统计的结果,这一节我们就来更具体了解一下什么是统计,熵又是什么,以及跟涨落又有什么关系。

统计在数学中大家从小学就开始学习,是用于描述一个群体中的数字特征,比如平均分、中位数等等。那么在热力学中,统计就是描述一群粒子的能量特征的,说白了就是在某一温度下处在不同能量下的粒子各占多少比例。在经典热力学中认为粒子是服从麦克斯韦-玻尔兹曼分布的,但是在量子力学中认为玻色子服从玻色-爱因斯坦分布,而费米子服从费米-狄拉克分布,这两种分布在高温极限情形下都可以过渡到麦克斯韦-玻尔兹曼分布。费米子包括夸克、电子、质子、中子等等,而玻色子包括光子、介子、氘核等等。

金镜反应化学方程式,金镜反应的原理(5)


麦克斯韦-玻尔兹曼分布

这些统计分布规律非常重要,它比我们仅仅去说“原子热运动的平均动能与温度成正比”信息量要大得多,从这些分布我们在上一节也解释了固体热容等等问题。现在我们要隆重介绍一个热力学中的统计量——熵。

1865年,在提出了热力学第一第二定律十五年之后,克劳修斯又引入了熵的概念,克劳修斯创造了一个词“entropy”,含义是“转变能量”,起初这个词只是为了描述吸热放热过程的一个态函数,其定义是元过程吸热量(或放热量)除以此过程的温度T(热力学温标)然后再对过程积分(由于热力学温度T永远是一个正数,所以任何吸热过程都是熵增过程,任何放热过程都是熵减过程)。1923年,普朗克来中国讲学时讲到“entropy”,胡刚复先生将它翻译为“熵”:两数相除谓之“商”,而“entropy”的本义是“热”与“温”相除,可称为“热温商”,加“火”字旁表示热学量。

克劳修斯提出的“熵”的概念又称为“热力学熵”或“宏观熵”,不过对于大多数读者来说,可能更熟悉“熵”的另一种含义,即对于无序度的衡量,又称为“微观熵”。1877年,玻尔兹曼提出了熵的统计物理学解释,用著名的玻尔兹曼公式描述了“微观熵”(S=klnΩ)(S是熵,k是玻尔兹曼常数,Ω是微观状态数),简单说来就是“微观状态数”越多,熵就越大,这两种“熵”的定义是完全等价的。

讲到这里,必须要举出一些简明的例子来说明一下所谓的“微观熵”和“无序度”是怎么回事了。首先说明什么叫“微观状态数”:在量子力学中,微观状态数是微观粒子可能占据的能态的数目,这也是后来玻色-爱因斯坦统计和费米-狄拉克统计的依据;虽然在玻尔兹曼的年代,量子力学还未出世,但他仍然采取微分的方法把连续的能量划分成很多能级。对于一个确定的宏观态,所有可能的微观状态的数目就称为“微观状态数”,我们可以用如下例子来直观地理解:

金镜反应化学方程式,金镜反应的原理(6)

假如有一个盒子里面放了一个隔板,左边有两个气体分子,右边什么也没有。现在这两个分子就只能处在左半边的盒子里,这种宏观态的微观状态数目就是1。现在我把挡板抽掉,气体“充满”了整个盒子,两个分子有可能出现在盒子的任意位置,于是出现了4种可能的情况,如图所示。这种宏观态的微观状态数目就是4。显然,熵变大了。那么从第一个宏观态到第二个宏观态发生了什么呢?这个过程平时也很常见,就是气体膨胀的过程,例如给气球放气,就是把限制在气球里的分子释放到整个大气中去,相当于这里我们抽掉了挡板。把关在气球里的“失去自由”的气散布到整个大气层去,显然是一种无序度增加的行为。

当然严格来说,这个简明的例子带有一定的误导性,因为微观状态其实是粒子在相空间占据的盒子,而不是我们直观的3维空间占据的盒子,但我们仍然可以用它来理解熵对于无序度的描述:熵低,也就是可能是微观状态数目少,就意味着“整齐”和“集中”(如果问你的房间的一个东西在哪?你很肯定地说在柜子里,那说明你的房间很整齐,状态数目少);熵高,也就是可能的微观状态数目多,就意味着“混乱”和“分散”(你说那个东西可能在柜子,可能在床上,可能在桌上,说明你的房间状态数目很多,很混乱)。例如,固体融化为液体是熵增过程,因为固体的结晶要比液态的整齐有序(从克劳修斯熵我们也已经阐述过,吸热过程一定是熵增的,所以固体融化是熵增过程);又如,把一碗沙子掺到一碗米里去,这和把气球的气放到大气里来是类似的,都是熵增加的过程。

现在我们给出两个判断熵的高低的实用的结论:

一个物理过程如果吸热,其熵必增加,反之亦然。

这一点因为我们已经在前面阐述过,吸热就意味着熵增,放热就意味着熵减,这是从宏观熵的角度理解;另一方面,根据统计物理学,也就是我们前几节花了很大篇幅所讲的温度的本质,如果一个物体吸热导致自己温度升高,不仅意味着微观粒子的动能大,也意味着所有粒子的分布范围更广,能级更多,所以微观状态数目也越多,熵就越大。当温度达到绝对零度时,所有的粒子都被冻结在了自己固定的能态上,此时微观状态数目是1,熵就变成了0(这是1912年能斯特提出的热力学第三定律,也叫“0K不能达到定律”)。

金镜反应化学方程式,金镜反应的原理(7)

如果一个杯子被打碎了,从微观熵的角度而言,事物变得无序,组成杯子的原子的可能的量子态也变多了,所以是一个熵增过程;从宏观熵来看,杯子不会好端端地碎掉,它一定是被你摔碎的,这就意味着你需要给它一定的速度或者能量,使得杯子的原子之间的化学键断裂,然后彼此分离,就碎掉了,这个过程一定是吸热的。

一个绝热系统的熵永远不会减少。

这就是著名的熵增加原理,也是热力学第二定律的又一种等价表述。这一原理可能是比能量守恒更重要的我们宇宙的运作方式。

金镜反应化学方程式,金镜反应的原理(8)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.