方差分析结果描述,方差分析法确定主要因素

首页 > 教育 > 作者:YD1662024-05-19 15:37:02

介绍

“事实是每个人都相信的简单陈述。也就是事实是没有错的,除非它被人发现了错误。假设有一个没人愿意相信的建议,那么它要直到被发现有效的时候才能成为事实。” –爱德华·泰勒

我们正在应对一场空前规模的流行病。全世界的研究人员都在疯狂地试图开发一种疫苗或COVID-19的治疗方法,而医生们正试图阻止这种流行病席卷整个世界。

我最近有了一个想法,把我的统计知识应用到这些大量COVID数据中。

方差分析结果描述,方差分析法确定主要因素(1)

考虑这样一个场景:医生有四种医疗方法来治疗病人。一旦我们有了测试结果,用最少时间治愈病人的治疗会是最好的方法。

但如果这些病人中的一些已经部分治愈,或者其他药物已经在治疗他们呢?

为了作出一个有信心和可靠的决定,我们需要证据来支持我们的做法。这就是方差分析的概念发挥作用的地方。

在本文中,我将向你介绍方差分析测试及其用于做出更好决策的不同类型。我将在Python中演示每种类型的ANOVA(方差分析)测试,以可视化它们并处理COVID-19数据。

注意:你必须了解统计学的基本知识才能理解这个主题。最好了解t检验和假设检验。

什么是方差分析测试(ANOVA)

方差分析,或称方差分析,可以看作是两组以上的t检验的推广。独立t检验用于比较两组之间的条件平均值。当我们想比较两组以上患者的病情平均值时,使用方差分析。

方差分析测试模型中某个地方的平均值是否存在差异(测试是否存在整体效应),但它不能告诉我们差异在哪里(如果存在)。为了找出两组之间的区别,我们必须进行事后检验。

要执行任何测试,我们首先需要定义原假设和替代假设:

基本上,方差分析是通过比较两种类型的变化来完成的,即样本均值之间的变化,以及每个样本内部的变化。以下公式表示单向Anova测试统计数据。

ANOVA公式的结果,即F统计量(也称为F比率),允许对多组数据进行分析,以确定样本之间和样本内部的可变性。

单向ANOVA的公式可以这样写:

方差分析结果描述,方差分析法确定主要因素(2)

方差分析结果描述,方差分析法确定主要因素(3)

当我们绘制ANOVA表时,上面的所有组成部分都可以如下所示:

方差分析结果描述,方差分析法确定主要因素(4)

首页 12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.