- 封闭
“封闭”其实是理解本文最核心的一个概念。
封闭是建立在集合与二元运算的概念的基础之上的。
对于某个数集和某种运算,如果从该数集里面任意挑两个数,做二元运算所得到的结果仍然是这个集合中的数,就说该数集对于这个二元运算是封闭的。
比如举个最简单的例子,自然数集对加法就是封闭的,因为任意两个自然数相加的结果,还是一个自然数。而自然数集对减法运算不封闭,比如我随便就可以举出两个数来2和3,他俩都是自然数,但是2-3=-1,它就不是自然数了。
封闭要回答本文提出的问题,就得从封闭这个概念来着手。
我们先来分析一下已知的集合对四则运算的封闭性。
- 自然数集N,对于加法运算和乘法运算都是封闭的,但是对于减法运算和除法运算不封闭。
- 整数集Z,对于加法运算,减法运算,乘法运算都是封闭的,但是对于除法运算不封闭。
- 有理数集Q,对于四则运算都是封闭的。
- 实数集R,对于四则运算都是封闭的。
- 复数集C,对于四则运算都是封闭的。
这里我想特别强调一下有理数集,有理数集对加减乘除4则运算都封闭,不是一件很明显的事情,我们需要有严格的证明。
所谓有理数就是可以写成两个整数之比的数,所以我们假设有两个有理数b1/a1,b2/a2,其中a1、b1、a2、b2都是整数,考察一下它们做四则运算的结果:
可以看出,四个运算结果依然都还是有理数,这就证明了有理数集对四则运算都是封闭的。
这里我想说的是,数学家们已经证明了:有理数集是对加减乘除四则运算都封闭的最小的数集。意思就是说任何比有理数还要小的集合,哪怕只比有理数集少一个数,就不再对加减乘除四则运算封闭了。
在抽象代数学中,我们把对加减乘除四则运算都封闭的集合称为一个数域(number field),可以看出,实数集和复数集都是数域。而我们上面提到的结论就是:有理数集是最小的数域。换句话说,任何数域都包含有理数集作为它的子集。
无理数集分析完这些,我们就可以来看看无理数集了。我们会发现,无理数及对四则运算都不封闭。我们很容易就能举出例子来:
- 对加法:√2和-√2都是无理数,但是加在一起等于0,0不是无理数。
- 对减法:√2和-√2的例子可以看成是√2-√2,结果也是0。
- 对乘法:√2×√2,结果是2,2不是无理数。
- 对除法:√2÷√2,结果是1,1不是无理数。