阿伦尼乌斯方程是最早由范特霍夫提出,瑞典科学家阿伦尼乌斯进一步分析得到的温度和反应速率的关系,并且提出能垒Ea的存在。
我认为整个方程最精华的地方在于提出了能垒这个概念,也就是说,Ea不变的情况下,无论如何改变外界条件,比如温度浓度等,反应都不会发生。
能垒在自然界中是普遍存在的现象,大部分的非自发反应都需要从外界获取能量以跨越能垒使反应能够得以发生。很多化学反应的条件十分苛刻,原因就在于能垒极高,反应想要发生需要汲取天地日月之精华(从外界获得极高的能量)
就好像你无法得到心仪姑娘的心一样,条件不过硬,说啥都白扯,你们之间的化学反应就是没法发生。那么我们有什么办法降低反应的能垒也就是Ea呢?答案是长得帅(催化剂)。
科学家们开发出各种各样的催化剂,让Ea变得更低,使得以前在较为温和的条件下无法发生的反应现在可以发生。阿伦尼乌斯方程导出了能垒的概念,加深了我们对化学反应的理解,在药物合成,化工生产,材料研究中应用极广。
生物学是充满了个体不确定性的研究科目,尤其是基础生物类都是寻找现象解释机理,缺乏像数学和物理那样准确的定量描述。并且生物本身是没有什么所谓的生物公式,基本就是统计学由来,物理学由来或者微积分的简单公式。
该公式的名字极具后现代意识流风格,其背后的故事更是令人莞尔乃至惋惜。1908年,当时供职于都柏林健力士酿酒厂的统计学家戈斯特发表了t检验的相关论文。该检验完美的契合了酿酒厂对于产品质检的需求,并马上在工程及科研领域得到广泛应用。然而,工厂老板认为该公式的发明人属于商业机密,戈斯特最终被迫使用笔名“学生”(student)来命名这一公式,从而失去了一个名垂史册的机会。
用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。研究里最常用的显著性水平是0.05,0.01。也就是说,当科研工作人员得出实验组和比较组显著水平小于0.05时,就可以高举双手欢呼:是的!看我有了多么了不起的世界级新发现!
当然,有时候我们在论文里写道,我们以其中几个为样本进行了深入的研究,其实潜台词非常可能是,如果再加两个样本或更多,显著水平就会大于0.05,就变得毫无意义了。。。。。。
4) 范德华状态方程关于理想气体有几个假设:气体分子不占空间,一直作直线运动,撞在容器壁上不发生变化,像弹力球一样回弹,此外分子间没有任何关系,都是孤独的分子,也不会变成液体或固体。
而1873年物理学家范德华(Johannes van der Waals)提出了实际气体状态方程。其特点在于将被理想气体所忽略的气体分子自身体积和分子间作用力考虑在内了。自此对气体的宏观物理特性有了更精确的描述。