小学圆周率的计算公式,小学圆周率推导过程

首页 > 教育 > 作者:YD1662024-06-03 05:05:47

格雷戈里-莱布尼茨公式

它被称为莱布尼茨级数,也被称为格雷戈里-莱布尼茨级数,用以纪念莱布尼茨同时代的天文学家兼数学家詹姆斯·格雷戈里。

看起来很吊是不是······

但是啊但是,还不够吊,因为问题还没完:

这个级数收敛极慢。

比如,算到 4/9,也就是前五项,结果仅为3.3396,误差有0.2之多。

它要到算500000项之后,才会精确到小数点后五位:

就算电脑也算得太累了。

何况莱布尼兹(1646年7月1日-1716年11月14日)当年是没有电脑的!

加快收敛

于是,人们尝试改进,希望能快点计算。

英国数学家梅钦在1706年用上面的级数,发掘了一个可以快速收敛的公式:

小学圆周率的计算公式,小学圆周率推导过程(5)

配合上面arctan(x)泰勒展开,梅钦依据此公式(没有电脑),把圆周率计算到小数点后一百多位。

英国数学家威廉·谢克斯花15年的时间以此计算到小数点后707位,不过在第528位时出错,因此后面的都不正确了。

微微杯具就是了。

神奇公式

现代有了电脑,我们希望更快的收敛速度,因此科学家在寻找新的级数。

历史总是留给吊人的,也总是会生产一些吊人的。

比如:

小学圆周率的计算公式,小学圆周率推导过程(6)

拉马努金公式

这玩意被称为拉马努金公式,是印度科学家拉马努金发明的。

第一位用拉马努金公式计算π并取得进展的是比尔·高斯珀,他在1985年计算了小数点后一千七百万位。

收敛再快一点?还有楚德诺夫斯基公式

小学圆周率的计算公式,小学圆周率推导过程(7)

楚德诺夫斯基公式

楚德诺夫斯基兄弟于1989年算得π小数点后10亿(10⁹)位,法布里斯·贝拉于2009年算得2.7千亿(2.7×10¹²)位,亚历山大·易和近藤滋在2011年算得一万亿(10¹³)位。

意不意外,惊不惊喜,

无不无聊······


上一页12末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.