这个部分的学习结束之后,你就能明白机器/深度学习的许多概念。最后推荐阅读Christopher Olah的博客,很有意思。
传送门:http://colah.github.io/
Part 2:涉足深度学习(1个月)
开始研究深度学习之前,最好重温一下大学数学。Ian Goodfellow传奇般的“花书”《深度学习》,简明扼要的概括了大部分重要主题。
建议大家尽可能深入地阅读线性代数、概率、信息理论的章节。每当读论文遇到深度学习概念时,都可以在书中找到参考。
以及,这本书有在线的版本。
例如英文版在此:
https://github.com/janishar/mit-deep-learning-book-pdf/blob/master/complete-book-bookmarked-pdf/deeplearningbook.pdf 。
而中文翻译版本在此:
https://github.com/exacity/deeplearningbook-chinese
关于深度学习的在线资料有很多,你可能会挑花了眼。
再一次,我觉得最好的选择,还是听吴恩达的《深度学习专项系列课程(Deep Learning Specialization)》。
Coursera传送门:
https://www.coursera.org/specializations/deep-learning
网易云课堂的传送门:
https://mooc.study.163.com/smartSpec/detail/1001319001.htm/
这门课程包括五大章节。其实不是免费的,你可以按照50美元/月购买。当然,如果你负担不起,还能申请“助学金”。申请时请详细阐明理由,处理的时间大概需要15天左右。
当然不付费,大部分内容都是可以看的。以及视频的部分,在很多地方也能免费收看。
这五门课程主要讲的是:
1、神经网络和深度学习(4周)
2、改善深度神经网络(3周)
3、结构化机器学习项目(2周)
4、卷积神经网络(4周)
5、序列模型(3周)