当前我们正在使用的磷酸铁锂配方电池,全称磷酸铁锂锂离子电池,属于锂离子电池的一种。正极即是上文提到的LiFePO4,可见磷酸铁锂的主要反应机理是由正极决定的,所以命名源于正极材料。
目前LFP材质有较差的导电性和较低的锂离子扩散系数,因此学界一直在利用各自办法攻克这些难题,包括使用纳米级材料或者引入新型导电剂来提升导电性能,提升可逆电容量等等。
LFP材质目前最大的优势在于不使用钴,是一种真正的“无钴”锂离子电池(废话,同理荷兰豆也是一款无荤的纯正素菜)。由于钴的产能集中在非洲,价格受国际局势影响的波动非常大,之前一下子涨到了60万/吨。
回收1吨电池所获得的金属重量(吨) | |||||
锂 Li | 钴 Co | 镍 Ni | 锰 Mn | 铝 Al | |
每吨金属价格 | 20万/吨 | 22万/吨 | 3万/吨 | 1万/吨 | 2万/吨 |
磷酸铁锂 LiFePO4 | 0.016 | ||||
锰酸锂 LiMn2O4 | 0.029 | 0.224 | |||
三元锂 NCM111 | 0.024 | 0.069 | 0.069 | 0.064 | |
三元锂 NCM523 | 0.028 | 0.047 | 0.119 | 0.066 | |
三元锂 NCM622 | 0.030 | 0.051 | 0.152 | 0.047 | |
三元锂 NCM811 | 0.033 | 0.028 | 0.221 | 0.026 | |
镍钴铝酸锂 LiNiCoAlO2 | 0.030 | 0.038 | 0.204 | 0.006 |
问题是,LFP材质与生俱来的优劣势也太过明显了,消费者们应该也很清楚市面上最长续航的纯电动乘用车一定不是LFP而是NCM,而臭名昭著的自燃之王高镍NCM在安全性上面根本不是LFP的对手。
磷酸铁锂LFP与三元锂NCM的路线之争,将在接下来很长一段时间愈演愈烈。
知己知彼百战百胜,我们接下来就深入了解一下LFP材质的优劣势。
磷酸铁锂配方的特性此前笔者写过一篇《电池分类与命名大全》,作为《电池研究院》栏目的知识目录,其中提到过磷酸铁锂配方的一些简述,今天来聊聊技术细节。
1、电压
以NCM三元锂为例,一般锂离子动力电池的标称电压在3.7V左右,工作电压范围宽达3.0-4.2V,所以BMS会比较好操作,SOC监控相对精准。
换成磷酸铁锂配方之后,标称电压降低至3.2V,工作电压范围在3.0-3.3V之间,充电的终止电压只有3.6V左右。
这就意味着,磷酸铁锂电池的电压比其他锂离子电池要低,而且工作电压范围比较窄,充放电曲线非常平缓,SOC监测准确度很低,电压一直都在3.2V左右所以很难监测出此时究竟是多高的SOC。
磷酸铁锂的BMS会在前后两端电压范围留有更大的裕量防止过充过放,这也造成多数磷酸铁锂电动汽车的车主也能感受到续航值监测不准、电量不多的问题。
目前学界已有一些解决方案来应对磷酸铁锂电池充放电曲线过于平缓而导致SOC不准的问题,比如重庆邮电大学的学者就提出了基于遗传算法的径向基函数神经网络来预测磷酸铁锂电池SOC,这种方法具备更强的适应能力,因此结果更加精准和稳定。
2、充放电率
在此前技术受限的情况下,磷酸铁锂配方的最佳充电率在0.5C-1.5C之间,属于比较低的充电速度。
宁德时代在2019年宣称,正在研发一种新的磷酸铁锂电池技术,在负极石墨的表面利用“快离子环”技术让石墨结构兼具超级快充和高能量密度的特性,石墨层增加锂离子嵌入速度后可以达到4C-5C的超级快充能力,相当于15分钟完成主要的充电过程。不过,现在这种技术尚未量产,当前市面上的磷酸铁锂电池拼快充性能的确不如三元锂。
说完充电率,再来说放电率。磷酸铁锂电池电池的正常工作放电率为2C左右,理论最大放电率可以到10C(实际上不会用到这么尽,有结构损坏的风险),算是很猛的。
下图数据可见,实线0.5C放电,若使用最下方虚线的3C放电倍率,放电容量下降幅度只有5%左右,表明磷酸铁锂电池在高倍率下依然可以有不错的放电性能,造高性能电动车没问题。