50种五角星折法图解,五角星折法图片大全

首页 > 经验 > 作者:YD1662022-10-26 10:40:23

本文为“第三届数学文化征文比赛

小折纸,有大历史

——可以写入教材的“一刀剪”最大精确五角星折法

作者: 傅薇

作品编号:038

摘要: “一刀剪”五角星早已有之,笔者原以为也就几十年的历史。成文过程中发现这段长长的关于五角星折纸的故事可以补充进娱乐数学的数学史中。但早期的“一刀剪”五角星方法,不是角度不精确,就是成品率不高(非最大)。本人用了三年时间打造出一种精确的、最大的且步骤较少的“一刀剪”五角星方法。据此,还得出了非常有用的推论,如:根据折出的36度可以五等分角;联合“折纸解决古希腊三大几何难题”之折纸“三等分角”方法,可以折出任意整数角度等。

关键词:折纸、娱乐数学、一刀剪、五角星、36度、五等分角、黄金比例、five-pointed star、MIT、 Erik Demaine、Between the Folds、Martin Gardner、G4G、fold-and-cut、OSME、BOS、Sam Loyd、Harry Houdini、Betsy Ross、Fu Wei

一、早期五角星/五边形折纸的背景故事

2.1 “一刀剪”问题及Erik Demaine父子的解答

&概念介绍:什么是“一刀剪”?

说到剪纸,大家应该不陌生,它是先折叠好纸,然后多刀剪,剪出某些特定图案。也许剪纸中包括“一刀剪”。但“一刀剪”(Fold-and-Cut Magic)其实是一个数学谜题,这您知道吗?

“你拿出一张纸,任意折,但最后要是一个平面,然后用剪刀剪一条直线,再把这张纸打开,你需要解答剪完后会得出什么形状?”这段话是Erik Demaine(麻省理工学院MIT有史以来最年轻教授)在折纸纪录片《折叠之间》(Between the Folds)中的叙述,他和你的父亲Martin Demaine解决这个“一刀剪”难题,获得了“麦克阿瑟奖天才奖(MacArthur Fellowship)”( 该奖被视为美国跨领域最高奖项之一)。他们父子得出的结论是,“一刀剪”——经过有限次折叠,再一刀剪下去,可以得出任何图形,其中包括“五角星”(five-pointed star)。

50种五角星折法图解,五角星折法图片大全(1)

图 1: 折纸纪录片《折叠之间》、Erik Demaine本人及他出版的书.

&概念介绍:什么是G4G?

G4G是Gathering for Gardner的缩写,是Tom Rodgers创办的纪念美国趣味数学大师马丁·加德纳(Martin Gardner)的社团,在国外每两年举行一次纪念活动,与会者都是秉承马丁·加德纳的娱乐数学思想,进行魔术、科学、拼图、谜题、智玩等多种主题的分享,有心者还将各领域专家的分享录成视频或集结成书。Martin Gardner是Erik Demaine的偶像,Erik Demaine从小酷爱做谜题,也曾担任过多年的G4G董事会主席,并为Martin Gardner编辑和出版过相关书籍。

50种五角星折法图解,五角星折法图片大全(2)

图2: 三本G4G会议讲座论文集及马丁·加德纳头像.

在第三本G4G会议论文集中,P23登载了Erik Demaine父子写的关于“一刀剪”的文章。由下图可见,其五角星不是正方形能裁的最大五角星。即便这个五角星是尖角碰到正方形的边上,它也不是最大的,因为它是以正方形的中线为对称轴;而正方形能裁的最大五角星是以正方形的一条对角线为对称轴的。读者可以自行想想原因。

50种五角星折法图解,五角星折法图片大全(3)

图3: Tribute to a Mathemagician书中登载的 Fold-and-Cut Magic方法P23

2.2 Sam Loyd书中记载的两种五角星折法(包括中国传统折法)

Sam Loyd介绍说他的第一种方法是最早、最好的方法,利用5*3.5的长方形纸如下图折叠。聪明的读者可以证明,它折出的角是有误差的,不是精确五等分角;并且特定比例的长方形纸不具有普适性。第二种也是中国的传统五角星折法,同样存在角度误差。

50种五角星折法图解,五角星折法图片大全(4)

首页 12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.