机器学习自动建模,深度学习自动建模

首页 > 经验 > 作者:YD1662022-10-30 05:29:25

编辑导语:作为一款机器学习平台,Amazon SageMaker Canvas是否真的为数据分析师、业务分析师等岗位提供了更加智能化的数据分析路径?本篇文章里,作者就对这款0代码机器学习智能工具做了体验测评,一起来看。

机器学习自动建模,深度学习自动建模(1)

身边有很多写SQL很厉害的数据分析人员,数据治理好了、对数据仓库、业务需求都很熟悉,因为对机器学习算法、数据挖掘模型不是很熟悉,没法独立产出更高阶的分析结果。

哪怕厉害的分析师自己花费九牛二虎之力,做出了模型,还要对模型不断地调优,一趟操作下来,也累得够呛。

能否在没有算法工程师支持的情况下,做模型训练和特征识别,快速调整策略呢?

最近体验了 Amazon SageMaker Canvas 这样一款人人自助式机器学习工具,我找到了答案。

一、产品体验

1. 数据集选择和介绍

笔者使用了Kaggle的公开的银行数据集。

包含了14个特征:序号、客户ID、名字、信用分、地区、性别、年龄、保有期、余额、购买的产品数量、是否有信用卡、是否活跃用户、固定工资、是否正在从银行中取钱。

机器学习自动建模,深度学习自动建模(2)

其中,需要构建的预测模型是:是否将会从银行中取出钱。

基于该数据集,笔者完整地体验了 Amazon SageMaker Canvas 数据集管理、建模、预测的流程。

2. 导入数据和预览

在导入了数据集之后,系统就给了一些特征提示。

机器学习自动建模,深度学习自动建模(3)

也可以在此处对特征值进行初步的筛选,缺失值、类型不匹配、唯一值等,还可以初步判断特征和目标特征之间的线性相关关系、影响因子。

给出就给用户一些特征权重的提示,能够快速地调整选中的特征。

比如一些非关键特征:Surname、CustomerId,就被我去掉了。这样,也适当减少不必要的计算量,提高模型构建速度。

3. 快速构建和标准构建

系统提供了两种构建模式:标准模式、快速模式。

快速构建模型模式,模型构建速度更快,精确度则要低一些。标准模式则反之,模型构建耗时更多,精准度则要高一些。

机器学习自动建模,深度学习自动建模(4)

首页 12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.