如果电场或磁场各处不同,我们就可以把路径AB分成无穷多份,把每一份的路径积分加起来,表示成:

需要注意路径并不一定是直线,沿着曲线也有路径积分。
4、麦克斯韦方程组
好了,现在我们知道了一个矢量可以计算通量,也可以计算路径积分。这样我们就可以来理解这四个伟大的方程了。
1.电场的有源性
麦克斯韦方程组的第一个方程用数学表示了法拉第的第一个观点:电荷会在周围空间产生电场。正电荷会向外发射电场线,负电荷会从周围吸收电场线。电荷的电量越大,所发射或者吸收的电场线越多。
如果我们用一个闭合曲面包围住一个电荷,那么这个闭合曲面上的电场通量就代表了电场线的根数。由于这些电场线都是由曲面内的电荷发射出来的,所以它正比于曲面内所有电荷的代数和。需要注意的是:无论我们所选取的曲面形状如何,只要它包围的电荷相同,它的电通量就是相同的。如果电荷在闭合曲面外,它发射的电场线就既要穿入曲面,又要穿出曲面,这样对曲面的电通量就没有贡献,因此在方程中考虑的电荷量都是曲面内部的电荷。

用公式写作

在这个公式中,等号左边部分表示 闭合曲面上的电通量,也就是穿出曲面的电场线根数,等号右边的Σq表示曲面内的电荷代数和,ε0称为真空介电常数。这个方程就是麦克斯韦方程组中的第一个方程,也称为电场高斯定律。这个方程告诉我们:电场是有源场,它的源就是空间中的电荷。
2. 磁场的无源性
与电场不同,无论是由磁体产生的磁场,还是由电流产生的磁场,磁感线总是闭合的。磁感线既没有出发点,也没有结束点。比如我们观察通电螺线管的磁场就会发现这个特点。
