在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
图1
【涉及考点】全等三角形的判定与性质;三角形中位线定理.
【解题分析】
(1)延长DF交AB于点G,根据三角形中位线的判定得出点G为AB的中点,根据中位线的性质及已知条件AC=BC,得出DC=DG,从而EC=FG,易证∠1=∠2=90°﹣∠DFC,∠CEF=∠FGH=135°,由AAS证出△CEF≌△FGH.∴CF=FH.
(2)通过证明△CEF≌△FGH(ASA)得出.
【详细解答】解:(1)FH与FC的数量关系是:FH=FC.
证明如下:延长DF交AB于点G,
图2
由题意,知∠EDF=∠ACB=90°,DE=DF,
∴DG∥CB,
∵点D为AC的中点,
∴点G为AB的中点,且DC=1/2AC,
∴DG为△ABC的中位线,
∴DG=1/2BC.
∵AC=BC,
∴DC=DG,
∴DC﹣DE=DG﹣DF,
即EC=FG.
∵∠EDF=90°,FH⊥FC,
∴∠1 ∠CFD=90°,∠2 ∠CFD=90°,
∴∠1=∠2.
∵△DEF与△ADG都是等腰直角三角形,
∴∠DEF=∠DGA=45°,
∴∠CEF=∠FGH=135°,
∴△CEF≌△FGH,
∴CF=FH.
(2)FH与FC仍然相等.
理由:由题意可得出:DF=DE,
∴∠DFE=∠DEF=45°,
∵AC=BC,
∴∠A=∠CBA=45°,
∵DF∥BC,
∴∠CBA=∠FGB=45°,
∴∠FGH=∠CEF=45°,
∵点D为AC的中点,DF∥BC,
∴DG=1/2BC,DC=1/2AC,
∴DG=DC,
∴EC=GF,
∵∠DFC=∠FCB,
∴∠GFH=∠FCE,
在△FCE和△HFG中
角CEF=角FGH,EC=GF,角ECF=角GFH
∴△FCE≌△HFG(ASA),
∴HF=FC.
图3
【总结】
这道题主要考查了全等三角形的判定和性质、三角形中位线定理等知识,综合性强,难度较大.
图4