在文章的剩下部分,我们将选择余弦作为重点,但我们要讲的一切也适用于正弦的情况。通过分解上面公式中的指数,我们得到:
- 图中红色的应该是相量,此处笔误写作了相位
通过分解指数,我们得到两个独立指数的乘积。第一个指数只包含参数phi,即余弦的初始相位,而另一个指数则包含角频率omega和自变量t。在大多数情况下,无论是物理学还是工程学,系统中都存在许多频率相同的正弦。然而,它们的振幅和相位将是不同的。这就是相量发挥作用的地方。
相量是一个复数,用来表示正弦函数。这个复数包含函数的振幅和初始相位,但它不包含其频率(重点)。
你已经可以看到为什么相量如此重要。如果我们有一个系统,所有的正弦波都有相同的频率,那么我们只需要一个数字,一个复数来表示每一个正弦信号。如果我们有了这个数字,那么我们所要做的就是用它乘以包含频率信息的exp(jωt),来得到实际的正弦波。
相量的几何解释复数可以被认为是复平面上的向量,这个平面是由垂直的虚轴和水平的实轴构造的。向量的长度代表复数的振幅,而与正实轴的角度代表其相位。
- 相量是复数平面上的复数
正如我们所看到的,振幅和相位是我们完全描述向量所需要的一切。这就是为什么频率不会出现在相量中。它不是向量的内在特征。相反,频率告诉我们这个箭头在复平面上逆时针旋转的速度。频率越大,向量的旋转速度就越快。
相位的应用由于相量使我们能够用复数替代正弦函数,我们可以在遇到正弦函数时使用它们。从电路和电磁场,一直到波浪和量子力学,相量似乎都是主宰。
电路
在电路中,当我们处理交变电流和电压时,相量就会派上用场。在这种情况下,电流和电压都是振荡的,因此,我们可以使用三角函数来模拟它们。此外,它们还能帮助我们定义一个元件的阻抗,简单地说,这个概念使我们能够用一个数值为复数的电阻来代替任何元件如电容器、电感器等。
波动力学
波动力学是研究波的物理学领域。波是一种扰动或振荡,它在空间和时间中传播,传递能量和动量,但不传递物质。作为一种振荡,还有什么比使用正弦波更好的方式来描述它们呢?同样,我们用欧拉公式把这个正弦波变成一个指数。
因此: