通过专题总结,我们已经知道极限的多种计算方法,包括级数收敛的必要条件、比值极限与根值极限的关系、等价无穷小与等价无穷大替换、洛必达法则、施笃兹定理、单调有界准则、夹逼准则、积分中值定理、微分中值定理、定积分与重积分的精确定义、积分的变限与加边问题、华里士公式、斯特林公式等. 大家可以回读以前的各专题来温习这些方法.
只有这些零碎的方法是不够的,我们需要系统地对重要的内容进行总结归纳并加以综合实战. 本专题首先全面归纳极限的相关计算技巧、方法,总结一下拿到一道计算题后应该有的思路,然后提供一份极限计算的综合练习题,并附以参考答案.
第一部分思路总结
我们首先全面归纳极限的相关计算技巧、方法.
一、利用定义证明
当一个极限形式较为简单,且结果已知时,可以用极限的定义加以证明.
二、函数极限的直接代入法
当一个函数在趋向点处连续时,可以将趋向点直接代入函数解析式中,得出极限结果.
三、通过计算单侧极限求极限
若左右极限的情况差别较大,尤其是当无穷大处的指数函数或反正(余)切函数、整点处的取整函数、分段点处的分段函数等情形出现时,则一般需要分别考虑左右极限.
四、借助简单的概念判断来确定极限
如“有界量”乘以“无穷小量”趋近于0,“有界量”除以“无穷大量”趋近于无穷大,“趋于非零常数的量”乘以“无穷大量”趋近于无穷大,“绝对值小于1的常数”的无穷大次幂趋于0,正的常数开无穷大次方趋近于1等等. 此外,在计算某些∞/∞极限时,还可以比较函数或数列值趋于无穷的速度,如指数函数比幂函数趋于无穷的速度快,故当x→ ∞时,x100/2x的极限等于0
五、根据子列极限情况推导原数列极限情况
若能在数列中取出两不同子列,使得这两个子列的极限不相等,则可以断定原极限不存在;若能在数列中取出一个发散的子列,也能说明原极限不存在. 若所有奇数项以及偶数项组成的两子列极限均存在且相等,则可以说明原数列极限也存在且等于这个值,即数列的奇数项构成的数列与偶数项构成的数列的极限存在并且相等时,则原数列的极限存在并且等于相同的极限值.
六、海涅定理
利用海涅定理证明函数极限不存在,或进行从函数极限到数列极限的转化.
海涅定理的内容:
函数f(x)在x→x0时极限等于A的充要条件是,对于任何满足以下三个条件的数列{xn},都有n→ ∞时f(xn)的极限等于A成立:
(1)对任何正整数n,都有xn≠x0;
(2)对任何正整数n,f(xn)都要有定义;
(3)n→ ∞时xn→x0.
要证明一个函数极限不存在有两种思路:
一是找到一个满足定理中三个条件的数列{xn}使得n→ ∞时f(xn)的极限不存在;
二是找到两个满足定理中三个条件的数列{xn}和{x'n}使得n→ ∞时f(xn)和f(x'n)不相等.
此外,若某个函数极限的值已经确定,则对应的数列极限也为此值,这里的理论依据也是海涅定理. 通过这个道理,我们可以将某些数列极限转化为函数极限进行计算(这样方便求导、使用洛必达法则等),然后转化回数列极限.
七、因式分解
某一些多项式是可以因式分解从而约去致零因子的,进一步可以定出未定式的极限值.
八、化无穷大为无穷小
我们可以在一个分式的极限中,给分子和分母同时除以式中出现的最高阶的无穷大,从而使得其他的无穷大量都变成无穷小,易于算出极限.
九、有理化
若式中出现了无理式,可以使用有理化的方法进行恒等变形. 若分子中出现了无理式,可对分子进行有理化;若分母中出现了无理式,可对分母进行有理化;若均出现,可以分子分母同时有理化. 有理化的具体方法就是,对分子和分母同时乘以无理式的“共轭根式”. 如果两个根式的乘积不含根号,就称这两种形式互为共轭根式,比如:
十、求和求积恒等变限求极限
先求和或求积再求极限,或对式子进行其他简单的恒等变形,再求极限. 如果某个式子易于直接求和,或易于直接求积,或能通过简单的变形求出极限,不妨就先变形,以便于迅速求得极限.
十一、利用对数恒等式
N=elnN. 在计算幂指函数的极限时,经常需要我们通过这个恒等式化简,让幂指函数消失,极限就易于求出了.
十二、利用三角恒等变换公式
三角恒等变换公式在一些关于三角函数的题目中可以起到至关重要的化简作用. 这一点在不定积分的计算中体现得更加淋漓尽致.
十三、利用重要极限