sgn是什么函数,sgn函数怎么读

首页 > 经验 > 作者:YD1662022-11-05 23:45:15

图12 单层神经网络

在“感知器”中,有两个层次。分别是输入层和输出层。输入层里的“输入单元”只负责传输数据,不做计算。输出层里的“输出单元”则需要对前面一层的输入进行计算。

我们把需要计算的层次称之为“计算层”,并把拥有一个计算层的网络称之为“单层神经网络”。有一些文献会按照网络拥有的层数来命名,例如把“感知器”称为两层神经网络。但在本文里,我们根据计算层的数量来命名。

假如我们要预测的目标不再是一个值,而是一个向量,例如[2,3]。那么可以在输出层再增加一个“输出单元”。

下图显示了带有两个输出单元的单层神经网络,其中输出单元z1的计算公式如下图。

sgn是什么函数,sgn函数怎么读(13)

图13 单层神经网络(Z1)

可以看到,z1的计算跟原先的z并没有区别。

我们已知一个神经元的输出可以向多个神经元传递,因此z2的计算公式如下图。

sgn是什么函数,sgn函数怎么读(14)

图14 单层神经网络(Z2)

可以看到,z2的计算中除了三个新的权值:w4,w5,w6以外,其他与z1是一样的。

整个网络的输出如下图。

sgn是什么函数,sgn函数怎么读(15)

图15 单层神经网络(Z1和Z2)

目前的表达公式有一点不让人满意的就是:w4,w5,w6是后来加的,很难表现出跟原先的w1,w2,w3的关系。

因此我们改用二维的下标,用wx,y来表达一个权值。下标中的x代表后一层神经元的序号,而y代表前一层神经元的序号(序号的顺序从上到下)。

例如,w1,2代表后一层的第1个神经元与前一层的第2个神经元的连接的权值(这种标记方式参照了Andrew Ng的课件)。根据以上方法标记,我们有了下图。

sgn是什么函数,sgn函数怎么读(16)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.