RTCores用于光线追踪加速,第三代RTCores的有效光线追踪计算能力达到191TFLOPS,是上一代产品2.8倍。
在Ampere架构中,第二代RTCores支持边界交叉测试(BoxIntersectiontesting)和三角形交叉测试(TriangleIntersectiontesting),用于加速BVH遍历和执行射线三角交叉测试计算,虽然光线追踪处理能力已经比初代的Turing架构核心更高效,但是随着环境和物体的几何复杂性持续增加,传统的处理方式很难再以更高效率、正确反应出的现实世界中的光线,尤其是光的运动准确性。
所以在第三代RTCores增加了两个重要硬件单元:OpacityMicromapEngine与DisplacedMicro-MeshesEngine引擎。OpacityMicromapEngine,主要是用于alpha通道的加速,可以将alpha测试几何体的光线追踪速度提高2倍。
在传统光栅渲染中,开发人员使用一些Alpha通道的素材来实现更高效的画面渲染,例如Alpha通道的叶子或火焰等复杂形状的物体。但在光线追踪时代,这传统的做法会为光线追踪带为不少无效的计算,例如运动性的光线多次通过一块叶子,光线每击中一次叶子,都会调用一次着色器来确定如何处理相交,这时就会做成严重的执行成本与时间等待成本。
而OpacityMicromapEngine用于直接解析具有非不透明度光线交集的不透明度状态
三角形。根据Alpha通道的不透明,透明与未知等三个不同的块状态进行处理:透明则直接忽略继续找下一个,不透明块则记录并告之命中,而未知的则交给着色器来确定如何处理,这样GPU很大部分都不需要进行着色器的调试处理,能够实现更为高效的性能。
DisplacedMicro-MeshesEngine