在我们开始之前,请注意,以任何有意义的方式讨论电磁学就意味着要讨论向量演算。请不要害怕,即使你不知道任何符号和术语的意思。向量微积分很难,但它的核心思想是直观的,我会在接下来的过程中解释一切。
在国际单位制中,麦克斯韦关于电场和磁场的著名方程是:
这些是在存在电荷函数ρ和电流j的情况下,电场E和磁场B的微分方程。ε₀和μ₀是物理常数,称为真空的介电常数和磁导率。光速c满足一个重要的关系式c² = 1/ε₀μ₀。当指定了场的边界条件时,这些方程完全且唯一地决定了场。
通常,对于给定的边界条件、电荷和电流结构,人们不会试图直接求解这些方程。相反,人们发明了许多数学技巧来简化许多不同类型的问题。然而,理解这些方程式背后的物理原理仍然很重要。
电场和磁场在电场E和磁场B存在下,速度矢量v且速度远小于c的电荷q受到洛伦兹力的作用:
有趣的是,在相对论的情况下,当力F表示相对论动量的时间变化率而不是经典动量时,这仍然是正确的。洛伦兹力中有两项。第一个是qE,称为静电力。这个力是由静电荷产生的电场E引起的。第二种力是qv⨯B,称为磁力。符号⨯被称为叉积,它表示一个垂直于v和B的向量,其大小为|v||B|sin(θ),其中θ是v和B的夹角。
文中的一些字符如绝对值等可能会显示错误,或者不显示,大家见谅。